CBER BEST Seminar Series

The CBER BEST Initiative Seminar Series is designed to share and discuss recent research of relevance to ongoing and future surveillance activities of CBER regulated products, namely biologics. The series focuses on safety and effectiveness of biologics including vaccines, blood components, blood-derived products, tissues and advanced therapies. The seminars will provide information on characteristics of biologics, required infrastructure, study designs, and analytic methods utilized for pharmacovigilance and pharmacoepidemiologic studies of biologics. They will also cover information regarding potential data sources, informatics challenges and requirements, utilization of real-world data and evidence, and risk-benefit analysis for biologic products. The length of each session may vary, and the presenters will be invited from outside FDA. 

Below you will find details of upcoming CBER BEST seminars, including virtual links that will be open to anybody who wishes to attend. Speakers who give their consent to be recorded will also have their presentations included on this page; you can find those sessions below the list of upcoming speakers.

Upcoming Seminars

Topic: Real-World Effectiveness of BNT162b2 Against Infection and Severe Diseases in Children and Adolescents: causal inference under misclassification in treatment status

Presenter: Dr. Yong Chen, Professor & Director of the Center for Health AI and Synthesis of Evidence (CHASE) at the University of Pennsylvania

Meeting Link | Calendar Invite

Description: The current understanding of long-term effectiveness of the BNT162b2 vaccine across diverse U.S. pediatric populations is limited. We assessed the effectiveness of BNT162b2 against various strains of the SARS-CoV-2 virus using data from a national collaboration of pediatric health systems (PEDSnet). We emulated three target trials to assess the real-world effectiveness of BNT162b during the Delta and Omicron variant periods. In the U.S., immunization records are often captured and stored across multiple disconnected sources, resulting in incomplete vaccination records in patients’ electronic health records (EHR). We implemented a novel trial emulation pipeline accounting for possible misclassification bias in vaccine documentation in EHRs. The effectiveness of the BNT162b2 vaccine was estimated from the Poisson regression model with confounders balanced via propensity score stratification. This study suggests BNT162b2 was effective among children and adolescents in Delta and Omicron periods for a range of COVID-19-related outcomes and is associated with a lower risk for cardiac complications.

Bio: Dr. Yong Chen is tenured Professor of Biostatistics and the Founding Director of the Center for Health AI and Synthesis of Evidence (CHASE) at the University of Pennsylvania. He is an elected fellow of American Statistical Association, International Statistical Institute, Society for Research Synthesis Methodology, American College of Medical Informatics, and American Medical Informatics Association. He founded the Penn Computing, Inference and Learning (PennCIL) lab at the University of Pennsylvania, focusing on clinical evidence generation and evidence synthesis using clinical and real-world data. During pandemic, Dr. Chen is serving as biostatistics core director for a national multi-center study on Post-Acute Sequelae of SARS CoV-2 infection (PASC), involving more than 9 million pediatric patients across 40 health systems.

Previous Seminars

Topic: KEEPER: Standardized structured data from electronic health records as an alternative to chart review for case adjudication and phenotype evaluation

Presenter: Anna Ostropolets, Director, Head of Innovation Lab, Odysseus Data Services

Topic: Use of Linked Databases in Pharmacodepidemiology: Considerations for Potential Selection Bias 

Presenter: Jenny Sun, Pfizer

Topic: Avoidable and bias-inflicting methodological pitfalls in real-world studies of medication safety and effectiveness 

Presenter: Katsiaryna Bykov, Harvard Medical School

Topic: Leveraging real-world data for better health in Europe through collaborations between regulators & academia 

Presenters: Xintong Li and Daniel Prieto-Alhambra, University of Oxford, NDORMS

Topic: Quantifying bias due to disease- and exposure misclassification in studies of vaccine effectiveness

Presenter: Kaatje Bollaerts, P-95

Topic: Negative outcome controls and p-value calibration in RWE generation

Presenter: Martijn Schuemie, Janssen R&D

Topic: Bayesian Safety Surveillance with Adaptive Bias Correction

Presenter: Fan Bu, UCLA

Topic: Bayesian Adaptive Validation Design for Vaccine Surveillance

Presenters: Timothy Lash and Lindsay Collin, Emory

 

Topic: Everything keeps changing: What COVID-19 taught us about surveillance

Presenter: Marc Lipsitch, Harvard

Topic: Quantitative Bias Analysis Methods to Improve Inferences

Presenter: Matthew Fox, BUSPH

Topic: Addressing Selection and Confounding Bias in Test-Negative Study Designs for Flu and COVID-19 Monitoring 

Presenter: Eric Tchetgen Tchetgen, University of Pennsylvania

Topic: Evaluating Use of Methods for Adverse Events Under Surveillance For Vaccines

Presenter: Nicole Pratt, University of South Australia

Topic: Vaccine safety evaluation using the self-controlled case series method 

Presenter: Heather Whitaker, Open University

Topic: Exploring Vaccine Safety Datalink COVID vaccine rapid cycle analysis (RCA) methods 

Presenter: Nicola Klein, Kaiser Permanente

Topic: COVID-19 pharmacoepidemiology in Canada 

Presenter: Robert Platt, McGill University

Topic: Statistical learning with electronic health records data

Presenter: Jessica Gronsbell, University of Toronto

Topic: Methods for Monitoring the Safety and Effectiveness of COVID-19 vaccines 

Presenter: Bruce Fireman, Kaiser Permanente

at presenter’s request, this session was not recorded

Topic: Understanding Informed Presence Bias in EHR Data 

Presenter: Ben Goldstein, Duke

Topic: Vaccine safety surveillance systems for routine and pandemic immunization programs

Presenter: Daniel Salmon, Johns Hopkins

Top