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Estimation bias due to phenotyping error

Real-world EHR data often suffer from phenotyping error due to imperfect phenotyping algorithms.
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Estimating the true association
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Pr(S;=1) =1 — ay) + (ag + a; — D)expit(By + L1x;), expit(t) =

ay, = Pr(S; = 0]Y; = 0): Specificity of the phenotyping algorithm
a, = Pr(S; = 1|Y; = 1): Sensitivity of the phenotyping algorithm

* With known ay and a4, an unbiased estimator of ; can be achieved by maximum likelihood
estimation.
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* However, it can be hard to determine the correct oy and 4.



Prior-knowledge-guided Integrated-likelihood
Estimation (PIE) method

PIE “average” over a range of possible values by adopting integrated likelihood.

* Maximize the integrated likelihood

Li(Bo, By) = f f L(Bo, By, to, 1) (ko ) datodary

* m(ay, a1) is a given prior distribution
* Requires specifying only a prior distribution of ¢y and a instead of the value of ay and 4.

Huang, J., Duan, R., Hubbard, R.A., Wu, Y., Moore, J.H., Xu, H. and Chen, Y., 2018. PIE: A prior knowledge
guided integrated likelihood estimation method for bias reduction in association studies using electronic
health records data. Journal of the American Medical Informatics Association, 25(3), pp.345-352.



Evaluation questions

How well does PIE perform under a
wide spectrum of operating
characteristics of phenotyping
algorithms under real-world scenarios?

From a hypothesis testing point of view,
does PIE improves type I error and
statistical power relative to the naive
method?

How does the choice of prior

distribution impact the performance of
PIE?

Evaluating PIE’s performance

Methods

Evaluating PIE on simulated data that are
generated under diverse outcome
prevalence and association effect sizes,
mimicking the real-world setting.

Evaluating PIE on synthetic positive
controls of COVID-19 infection
constructed based on known negative
controls.



Simulation study

Evaluating the bias, type I error and power of PIE

The exposure x: Bernoulli distribution with a mean of 30%.

The prevalence of outcome Y under unexposed (determined by f,) varies from 5% to 50%

Effect size (f1): log 3 in bias evaluation, 0 in type | error evaluation, and varies in power evaluation.
True specificity: 99%; True sensitivity: 65%

The prior distribution of specificity is fixed as Uniform (0.95, 0.9999).

The prior distribution of sensitivities varies under different mean and spread. We used uniform
distribution, beta distribution and logit normal distribution.

Methods: PIE with different priors, naive method, MLE with known sensitivity and specificity
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Simulation study - Bias

Association estimation from 200 simulated data (N=3000).
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PIE was always closer to the truth
compared with the naive method,
indicating a bias reduction.

As the prior of sensitivity became
more variable (i.e., larger spread),
PIE shifted away from the truth.

The influence of the prior of
sensitivity was larger as the
prevalence of the response
became larger.



Type | Error

Simulation study — Type | Error & Power
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« Type | Error: Similar across the methods. No specific pattern.
« Power: Similar across different methods and all smaller than the gold standard method (known outcome).



Real-World-Inspired Evaluation Design

e Goal:
* Evaluate the robustness of PIE under real-world-like conditions.

« Setting informed by real-world data:
« Qutcome: COVID-19 infection (binary) emulating institutional phenotype definitions.

 Predictors: Synthetic positive controls created from known negative controls.

* Prevalence, sensitivity, specificity, and missing data patterns informed by real EHRs (e.g.,
PEDSnet, CHOP studies).

* Details:
« Sample size: 3,000
« Qutcome prevalence: 5% to 50%
 Sensitivity: 0.65 (low-end of real-world phenotyping)
« Specificity: 0.99 (typical of real-world EHRS)



Real-World-Inspired Evaluation Design

Negative — Positive Control Construction:

 Based on real-world unassociated predictors: H46-H48, H53-H54, H30-H36, H15-H22.
« Positive controls created by injecting known effect sizes: 1.5 and 4.

« Maintains realistic covariate distribution and EHR structure.

Approach:

 Applied PIE and naive estimators to bootstrap with 20 re-sampling.

* Priors:
 Sensitivity ~ Uniform(0.79, 0.95)
 Specificity ~ Uniform(0.95, 0.9999)

Purpose:
« Mimic real-world evaluation where ground truth is not observable.
« Examine bias and variability across effect size magnitudes.



Real-World-Inspired Evaluation Design Result

(a) Effect Size 1.5

Finding:

 PIE consistently outperformed the naive estimator,
especially at higher effect sizes.

 Nailve method showed systematic attenuation toward the
null, growing worse with stronger effects.

* PIE demonstrated robustness even with moderately
Informative priors.

Interpretation:

« Emulated results reflect what would likely occur in real-
world EHR studies.

« PIE is most beneficial for estimation, particularly under
noisy or uncertain phenotyping conditions.

 Supports future real-world applications, such as trial
emulation and vaccine effectiveness research.
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Evaluating PIE’s performance: Conclusion

Evaluation questions

How well does PIE perform under a
wide spectrum of operating
characteristics of phenotyping
algorithms under real-world scenarios?

From a hypothesis testing point of view,
does PIE improves type I error and
statistical power relative to the naive
method?

How does the choice of prior

distribution impact the performance of
PIE?

Conclusion

PIE effectively mitigates estimation
bias due to phenotyping errors in a
wide spectrum of real-world settings,
particularly with accurate prior
Information.

Its main benefit lies in bias reduction
rather than hypothesis testing
Improvement.

The impact of the prior is small for
low-prevalence outcomes.
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