

Use of GLP-1 receptor agonists and subsequent risk of acute liver injury

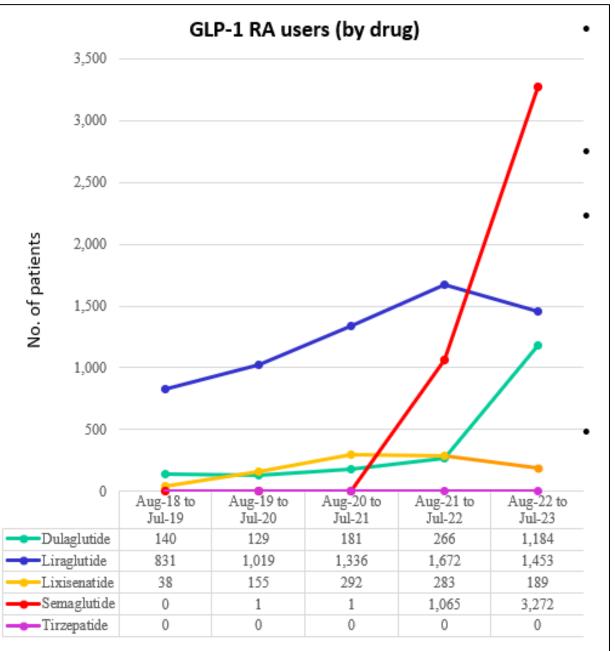
A cohort analysis in the OMOP CDM (GLP1-DILI)

Sreemanee Dorajoo | Health Sciences Authority, Singapore Evelyn Goh | National University of Singapore

6 Dec 2024 | APAC OHDSI Symposium 2024

Some Background

Sreemanee Dorajoo | Health Sciences Authority, Singapore



- GLP-1 receptor agonists (GLP-1 RA) are increasingly used as treatment for T2DM and obesity.
- Several case reports have arisen on acute liver injury (ALI) postprescription of GLP-1 RA
- Rising usage and seriousness of ALI warrants closer assessment to evaluate the risk

 GLP-1 receptor agonists (GLP-1 RA) are increasingly used as treatment for T2DM and obesity

Note: There may be duplicate counts of patients who are prescribed multiple GLP-1 RA within the same time period

Acute liver injury safety concerns have appeared

ABSTRACTS: CLINICAL VIGNETTES/CASE REPORTS - LIVER

Drug-induced Liver Injury Associated with the Glucagon-like Peptide 1 (GLP-1) Agonist Liraglutide 1131

Kern, Emily MD; VanWagner, Lisa MD, MS; Rinella, Mary MD, FACG

Author Information⊗

American Journal of Gastroenterology 108():p S335-S336, October 2013.

Article Liraglutide-Induced Hepatotoxicity

Yaakov Maor¹, David Ergaz², Stephen D. H. Malnick³, Ehud Melzer¹

- ¹ Kaplan Medical Center, Institute of Gastroenterolo Jerusalem, Rehovot 71600, Israel; yaakovma1@clal
- ² Internal Medicine Day-Care Kaplan Medical Cent Rehovot 71600, Israel; david.ergaz@clalit.org.il
- ³ Kaplan Medical Center, Department of Medicine (
- ⁴ In Vitro Drug Safety and Biotechnology and Depa

TIRZEPATIDE-RELATED ACUTE LIVER INJURY

Irrum Abdullah¹, Husam El-Ghousain¹, Meshaan Alenezi²

¹ Internal Medicine Department, Adan Hospital Kuwait, Hadiya, Kuwait ² Gastroenterology Department, Adan Hospital Kuwait, Hadiya, Kuwait

Corresponding author's e-mail: errumabdullah@gmail.com

LIVER: CLINICAL VIGNETTES/CASE REPORTS

S3653 Semaglutide-Induced Hepatotoxicity: A Rare Case of Drug Induced Liver Injury

Galeano Lovera, Santiago F. MD^{*}; Gnanapandithan, Karthik MD, MS

Author Information⊗

The American Journal of Gastroenterology 118(10S):p S2370, October 2023. | *DOI:* 10.14309/01.ajg.0000964252.91007.e2

FREE

Metrics

Introduction:

Semaglutide is a GLP-1 analogue approved for the treatment of type 2 diabetes and weight loss. Drug-induced liver injury (DILI) is a rare but significant cause of liver disease associated with various medications. We present a case of a 67-year-old woman who developed acute hepatocellular injury after initiation of semaglutide therapy for weight loss.

EMA has conducted a study

Home Data Sources Studies Institutions Networks What's new Support

Home

Association between exposure to liraglutide versus active comparators and risk of acute hepatic injury

First published: 05/07/2024 Last updated: 14/10/2024

EU PAS number: EUPAS100000243

Subscribe

L Download as PDF

Methods applied

- IQVIA[™] DA Germany database ٠
- New-user, active comparator ٠ design
- Diagnosis codes only for ALI ٠
- Propensity score matching ۰
- Intention-to-treat analysis ٠
- Time-to-event, Cox regression ۲

Box 1. Summary of	study methods
	 Those with recorded history of the outcome prior index-date (Excluded conditions are specific to each outcome, see more details in Section 5.3).
Treatment protocols	Initiate any of the following substances at index-date (as monotherapy). <u>Target arms (exposure of interest):</u> Iiraglutide (target arm [Cohort 1], class: GLP-1 receptor agonist) <u>Comparator arms:</u> empagliflozin (comparator arm [Cohort 2], class: SGLT-2 inhibitor) dapagliflozin (comparator arm [Cohort 3], class: SGLT-2 inhibitor) sitagliptin (comparator arm [Cohort 4], class: DPP-4 inhibitor)
Assignment procedures	We assumed treatments are randomly assigned conditional on the propensity score (PS) [see Section 5.6, Potential confounding factors]
Index-date (cohort entry, beginning of follow-up)	The index-date was the date of the initiation of treatment defined as a prescription date for liraglutide, empagliflozin, dapagliflozin or sitagliptin.
Outcome	First ever recorded occurrence of any of the conditions (incident event) included in the definition for each outcome: "Diseases of liver" (comparison 1), acute hepatic injury (comparison 2), acute hepatic injury with no chronic hepatic failure (comparison 3) [See section 5.6, Outcomes, and Annex II]
Follow-up	Patients were followed-up from index-date up to maximum of 90 days. Thus, patients were followed-up from index-date to the earliest of: date of first occurrence of outcome, loss to follow-up, death, end of follow-up (90 days) or end of the study period [See Section 5.5, Follow-up period]

Table S3. Predefined⁽¹⁾ baseline characteristics before and after PS matching in **T2DM patients** in the IQVIA[™] DA Germany database

	E	Before matching				After matching		
	Target	Comparate	or	Target	Comparator			
Characteristic	%	%	SMD	%	%	SMD		
Age group								
10 - 14		0.0						
15 - 19	0.1	0.0	0.04	0.1	0.1	0.00		
20 - 24	0.3	0.1	0.06	0.3	0.3	0.0		
25 - 29	0.6	0.2	0.08	0.5	0.7	-0.0		
30 - 34	1.4	0.5	0.11	1.4	1.5	0.0		
35 - 39	2.9	1.2	0.13	2.5	2.5	0.0		
40 - 44	5.3	2.3	0.18	4.3	4.6	-0.0		
45 - 49	8.1	4.7	0.15	7.7	7.6	0.0		
50 - 54	14.5	9.2	0.17	13.1	14.4	-0.0		
55 - 59	17.6	13.8	0.11	17.1	17.3	-0.0		
60 - 64	17.0	16.5	0.01	16.5	16.4	0.0		
65 - 69	14.3	16.0	-0.05	15.2	15.9	-0.0		
70 - 74	9.6	13.9	-0.13	9.8	8.0	0.0		
75 - 79	5.4	10.7	-0.18	7.3	6.8	0.0		
80 - 84	2.5	7.4	-0.20	3.5	3.2	0.0		
85 - 89	0.3	2.9	-0.17	0.5	0.6	-0.0		
90 - 94	0.0	0.5	-0.07	0.1	0.0	0.0		
95 - 99		0.0			0.1			
Gender: female	45.6	35.8	0.20	47.1	49.5	-0.0		
Medical history: General								

Some notable differences between liraglutide and comparator

Some notable

liraglutide and

comparator

differences

between

Table S3. Predefined⁽¹⁾ baseline characteristics before and after PS matching in **T2DM patients** in the IQVIA[™] DA Germany database

	Before matching			After matching		
	Target	Comparator		Target	Comparator	
Characteristic	%	%	SMD	%	%	SMD
Medical history: Cardiovascular disease						
Atrial fibrillation	2.3	3.4	-0.06	1.9	1.8	0.01
Cerebrovascular disease	3.8	4.9	-0.05	2.9	2.5	0.03
Coronary arteriosclerosis	4.0	8.7	-0.18	4.3	4.0	0.01
Heart disease	21.7	32.0	-0.22	18.8	17.8	0.03
Heart failure	6.5	9.7	-0.11	5.4	5.1	0.01
Ischemic heart disease	10.1	16.1	-0.17	8.7	7.7	0.04
Peripheral vascular disease	9.9	9.2	0.02	7.3	7.3	0.00

Results

No increased ALI risk observed, relative to new users of SGLT2i / DPP4i

Treatment	Follow-up (person-	n					
arm	years)	events	IR	95%	6 CI	HR	95% CI
365 days							
Sitagliptin	7710.90	25	3.24	2.07	4.54	1.00	[Reference]
Liraglutide	7760.48	10	1.29	0.52	2.19	0.40	0.18 0.80
180 days							
Sitagliptin	4007.91	11	2.74	1.25	4.49	1.00	[Reference]
Liraglutide	4016.81	7	1.74	0.50	3.24	0.63	0.23 1.61
90 days							
Sitagliptin	2080.46	5	2.40	0.48	4.81	1.00	[Reference]
Liraglutide	2071.77	<5	(*)	(*)	(*)	0.80	0.20 3.04

Diabetes Care Volume 45, October 2022

2289

Incretin-Based Drugs and the Risk of Acute Liver Injury Among Patients With Type 2 Diabetes

Diabetes Care 2022;45:2289-2298 | https://doi.org/10.2337/dc22-0712

OBJECTIVE

To determine whether the use of dipeptidyl peptidase 4 (DPP-4) inhibitors and glucagon-like peptide 1 receptor agonists (GLP-1 RAs), separately, is associated with an in

with an in

cose cotra RESULTS

RESEARC

Compared with SGLT-2 inhibitors, DPP-4 inhibitors were associated with a 53% in-We used t sode Stati creased risk of acute liver injury (HR 1.53, 95% CI 1.02–2.30). In contrast, GLP-1 bases to 106,310 i while the RAs were not associated with an overall increased risk of acute liver injury (HR SGLT-2 in stratificat acute live 1.11, 95% CI 0.57–2.16). However, an increased risk was observed among female RESULTS users of both DPP-4 inhibitors (HR 3.22, 95% CI 1.67–6.21) and GLP-1 RAs (HR Compared creased ri ^{creased r} 3.23, 95% CI 1.44–7.25).

Richeek Pradhan, 1,2 Hui Yin,2

Oriana H.Y. Yu,^{2,3} and Laurent Azoulay^{1,2,4}

1.11, 95% ...

users of both DPP-4 inhibitors (HR 3.22, 95% CI 1.67–6.21) and GLP-1 RAs (HR 3.23, 95% CI 1.44–7.25).

CONCLUSIONS

In this population-based study, DPP-4 inhibitors were associated with an increased risk of acute liver injury compared with SGLT-2 inhibitors in patients with type 2 diabetes. In contrast, an increased risk of acute liver injury was observed only among female GLP-1 RA users. Occupational Health, McGill University, Montreal, Quebec, Canada ²Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada ³Division of Endocrinology, Jewish General Hospital, Montreal, Quebec, Canada ⁴Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada

Corresponding author: Laurent Azoulay, laurent.

 Evaluate risk of ALI in T2DM users of GLP-1 RA compared to DPP4

Phenotype Definition

Evelyn Goh | National University of Singapore

Objective

- Evaluate risk of
 - Acute liver injury
 - \circ In T2DM users
 - $\circ~$ of GLP-1 RA

[cohort]

[outcome]

- [target exposure]
- compared to DPP4 [comparator]

Standardizing the question makes it possible to standardize the analysis and standardize the evidence

Analytic use case	Туре	Structure
	Disease Natural History	Amongst patients who are diagnosed with <insert disease="" interest="" of="">, what are the patient's characteristics from their medical history?</insert>
Clinical characterization	Treatment utilization	Amongst patients who have <insert disease="" interest="" of="">, which treatments were patients exposed to amongst <list disease="" for="" of="" treatments=""> and in which sequence?</list></insert>
endracterization	Outcome incidence	Amongst patients who are new users of <insert drug="" interest="" of=""> among the population with <insert indication="" interest="" of="">, how many patients experienced <insert interest="" of="" outcome=""> within <time exposure="" following="" horizon="" start="">?</time></insert></insert></insert>
Population-level	Safety surveillance	Does exposure to <insert drug="" interest="" of=""> increase the risk of experiencing <insert adverse<br="" an="">event> within <time exposure="" following="" horizon="" start="">, among the population with <insert indication of interest>?</insert </time></insert></insert>
effect estimation	Comparative effectiveness	Does exposure to <insert drug="" interest="" of=""> have a different risk of experiencing <insert (safety="" any="" benefit)="" or="" outcome=""> within <time exposure="" following="" horizon="" start="">, relative to <insert comparator="" treatment="">, among the population with <insert indication="" interest="" of="">?</insert></insert></time></insert></insert>
effect estimation	Comparative effectiveness	outcome (safety or benefit) > within <time exposure="" following="" horizon="" start="">, relative to</time>
effect estimation Patient level prediction		outcome (safety or benefit) > within <time exposure="" following="" horizon="" start="">, relative to <insert comparator="" treatment="">, among the population with <insert indication="" interest="" of="">? For a given patient who is diagnosed with <insert disease="" rayon="" te="" your="">, what is the probability that they will go on to have <another complication="" disease="" or="" related=""> within</another></insert></insert></insert></time>

Framing clinical question into standardized format

Comparative
effectivenessDoes exposure to <insert drug of interest> have a different
risk of experiencing <insert any outcome (safety or
benefit) > within <time horizon following exposure start>,
relative to <insert comparator treatment>, among the
population with <insert indication of interest>?

Comparative
effectivenessDoes exposure to GLP-1 receptor agonists have a different
risk of experiencing acute liver injury within time from day
after exposure start to exposure end, relative to DPP-4
inhibitors, among the population with Type 2 diabetes
mellitus?

Target cohort developed for estimation study: GLP-1 receptor agonist

- Entry event: First drug exposure to GLP-1 receptor agonist
- Inclusion criteria:
 - >=365 days of prior observation
 - Age >= 18
 - At least 1 condition occurrence of Type 2 Diabetes Mellitus any time prior
 - O occurrences of Type 1 Diabetes Mellitus and Secondary Diabetes any time prior
 - Exposure to metformin (>90-day duration or >3 exposures) any time prior
 - No 'liver or biliary-related conditions' any time prior
- Cohort exit: No longer have continuous exposure persistence of 60 days between exposure records

Comparator cohort developed for estimation study: DPP-4 inhibitor

- Entry event: First drug exposure to DPP-4 inhibitor
- Inclusion criteria:
 - >=365 days of prior observation
 - Age >= 18
 - At least 1 condition occurrence of Type 2 Diabetes Mellitus any time prior
 - 0 occurrences of Type 1 Diabetes Mellitus and Secondary Diabetes any time prior
 - Exposure to metformin (>90-day duration or >3 exposures) any time prior
 - No 'liver or biliary-related conditions' any time prior
- Cohort exit: No longer have continuous exposure persistence of 60 days between exposure records

Outcome cohort developed for estimation study: acute liver injury

- Entry event: All condition occurrences of acute liver injury
 - Defined by OHDSI phenotype library diagnostic codes
- Inclusion criteria:
 - O condition occurrences of chronic hepatic failure on the index date
 - O occurrences of 'acute liver injury' in the 365d prior to the index date
- Cohort exit:
 - Condition end date + 90 days

New user comparative cohort study

Executed within each data source across distributed network

- Large Scale Propensity Score (LSPS) model 1:1 matching between target (GLP1RA) and comparator (DPP4i) cohorts
- Hazard Ratio (HR) estimated using Cox proportional hazards model for outcome of interest (acute liver injury) during the 'on treatment' time-at-risk'
- 130 negative control outcomes
- Evidence synthesis across network to produce composite HR
 Bayesian meta-analysis of all sources passing objective diagnostics

Objective diagnostics

- Empirical equipoise
 - What proportion of target population is close to treatment indifference?
 - PASS if Equipoise (Preference score 0.3-0.7) > 0.20
- Covariate balance
 - Are baseline characteristics balanced?
 - PASS if Maximum Absolute Standardized Difference of Means after adjustment (Max ASDM) < 0.1
- Residual bias
 - Is the residual bias observed from negative controls small enough to accept that calibrated effect estimates can be trusted as unbiased?
 - PASS if Expected Absolute Systematic Error (EASE) < 0.25</p>

Study implementation

- R analysis package is publicly available on Git: <u>https://github.com/ohdsi-studies/Glp1Dili/</u>
 - Uses HADES packages, including Strategus orchestration using CohortGenerator, Characterization, CohortIncidence, CohortMethod, and EvidenceSynthesis packages
- Preliminary results available for exploration using R Shiny: <u>https://results.ohdsi.org/app/24_Glp1Dili</u>
 - -Uses R Shiny with OhdsiShinyModules

Preliminary results

Incidence: GLP-1 cohort

Source name	Country	Persons at risk	Average Time-at-risk	Outcomes	Incidence rate (per
			(days/person)		100 person-years)
France Disease Analyzer	France	807	87	0	
Yonsei University Severance CDM	Korea	1,096	51	<5	
Japan Medical Data Center (JMDC)	Japan	4,748	325	<5	
Taipei Medical University	Taiwan	1,380	362	<5	
LPD Australia	Australia	8	35	0	
MarketScan Multi-State Medicaid	U.S.	32,052	279	49	0.20
MarketScan Medicare Supplemental	U.S.	17,690	274	32	0.24
(MDCR)					
MarketScan Commercial Claims (CCAE)	U.S.	155,857	333	127	0.09
Optum EHR	U.S.	252,236	200	244	0.18
HealthVerity CC	U.S.	726,052	310	1,099	0.18
Iqvia LRx-US9-LAAD	U.S.	2,805,992	340	1,738	0.07
US Department of Veterans Affairs (VA)	U.S.	96,854	479	101	0.08
PharMetrics	U.S.	336,935	327	333	0.11
OPTUM Extended DOD	U.S.	166,471	293	265	0.20

Cohort counts from estimation analyses

Database	Country	Target (GLP1)	Comparator (DPP4)	Matched (per group)
France Disease Analyzer	France	1,861	2,283	621
Yonsei University Severance CDM	Korea	2,400	5,596	571
Japan Medical Data Center	Japan	5,787	13,200	3,134
Taipei Medical University CRD	Taiwan	1,390	6,550	938
MarketScan Multi-State Medicaid	U.S.	32,073	14,191	11,039
MarketScan Medicare Supplemental (MDCR)	U.S.	18,522	8,549	5,924
MarketScan Commercial Claims (CCAE)	U.S.	155,904	47,493	41,273
Optum EHR	U.S.	252,117	134,643	94,372
Healthverity CC	U.S.	726,291	314,846	245,191
Iqvia LRx-US-9-LAAD	U.S.	2,805,776	1,151,914	929,511
US Department of Veterans Affairs (VA)	U.S.	96,869	98,605	32,310
Pharmetrics	U.S.	336,826	111,118	94,143

How many passed diagnostics?

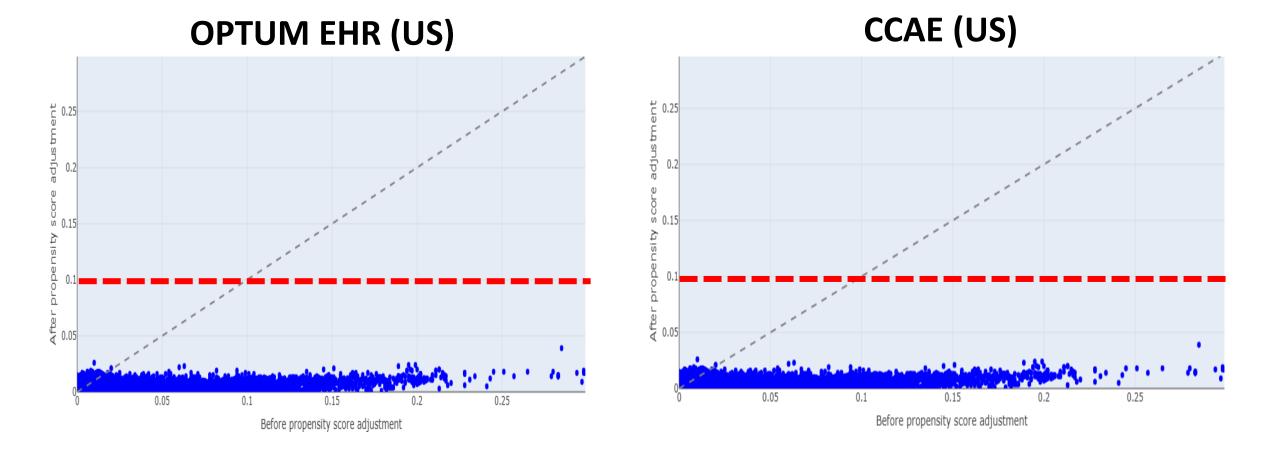
9 have passed so far

Database	OVERALL	COVARIATE BALANCE	EMPIRICAL EQUIPOISE	RESIDUAL BIAS (EASE)
France Disease Analyzer	Fail 🗙	FAIL 🗙	PASS 🔽	FAIL 🗙
Healthverity CC	Pass 🔽	PASS 🔽	PASS 🔽	PASS 🗹
MarketScan Commercial Claims (CCAE)	Pass 🔽	PASS 🔽	PASS 🔽	PASS 🔽
MarketScan Multi-State Medicaid	Pass 🗹	PASS 🔽	PASS 🔽	PASS 🔽
MarketScan Medicare Supplemental (MDCR)	Pass 🗹	PASS 🔽	PASS 🔽	PASS 🔽
Japan Medical Data Center	Pass 🗹	PASS 🔽	PASS 🔽	PASS 🗹
LPD Australia	Fail 🗙	FAIL 🗙	PASS 🔽	NOT EVALUATED
Iqvia LRx-US-9-LAAD	Pass 🔽	PASS 🔽	PASS 🔽	PASS 🔽
Optum EHR	Pass 🔽	PASS 🔽	PASS 🔽	PASS 🔽
PharMetrics	Pass 🔽	PASS 🔽	PASS 🔽	PASS 🔽
Yonsei University Severance CDM	Fail 🗙	FAIL 🗙	PASS 🔽	FAIL 🗙
Taipei Medical University CRD	Fail 🗙	FAIL 🗙	PASS 🔽	PASS 🔽
US Department of Veterans Affairs (VA)	Pass 🔽	PASS 🗹	PASS 🔽	PASS 🔽

Total cohort counts (for this current study)

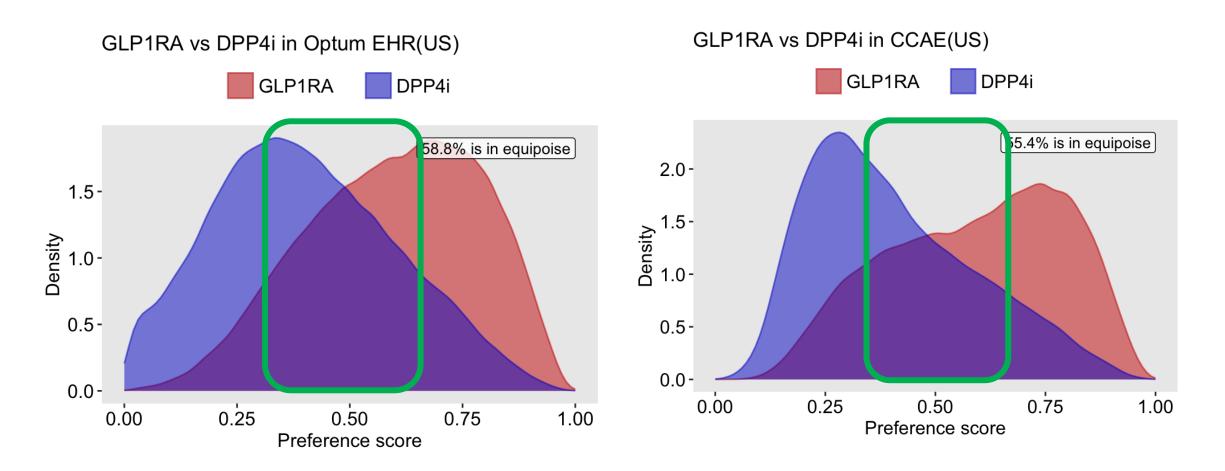
- Total GLP1 = 4,430,165
- Total DPP4 = 1,894,559
- Total matched = **1,456,897**

Total cohort counts (for this current study)


- Total GLP1 = 4,430,165
- Total DPP4 = 1,894,559
- Total matched = **1,456,897**

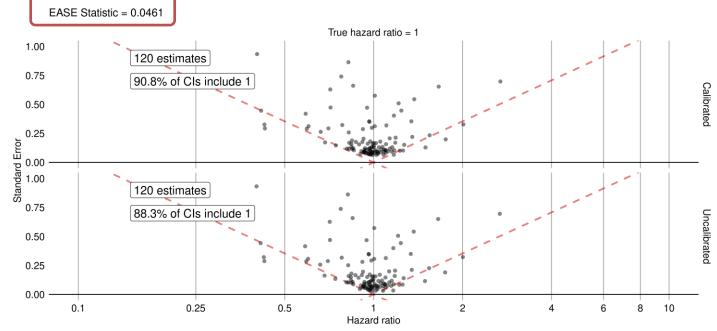
• Countries: U.S. + Japan

Covariate balance – example databases


• Did our PS matching balance covariates? YES

Preference score distribution

• Did we have appropriate overlap in preference score? YES


- Can estimate systematic error by using **negative control experiments**:
 - Compare results against 'known truth'; outcomes unlikely to be associated with GLP-1 use
- Measure Expected Absolute Systematic Error (EASE)

Residual bias

- Did we have assessment and mitigation of residual bias?
- 130 negative controls in total
- Estimates below the line in graphs are statistically different from the true effect size
- Negative control outcomes should return estimate of 1
- 88.3% of negative control estimates had HR with CI that included 1 (before calibration)
- Sufficiently low systematic error; EASE score close to 0 = good calibration

GLP-1 VS DPP-4i (OPTUM EHR)

Meta analysis results

GLP1RA vs DPP4i

	Event Rate		Hazard ratio	
Source	GLP1RA	DPP4i	(95% CI)	
CCAE(US)	0.70	1.48	0.45(0.28-0.72)	
HVCC(US)	1.96	2.44	0.82(0.67-0.99)	
LAAD(US)	0.78	0.97	0.83(0.67-1.02)	
MDCD(US)	2.61	1.83	1.38(0.71-2.67)	
MDCR(US)	2.37	3.17	0.82(0.37-1.82)	
Optum EHR(US)	1.95	2.26	0.87(0.65-1.17)	
PharMetrics(US)	1.11	1.42	0.78(0.59-1.04)	
VA(US)	0.94	0.67	1.31(0.73-2.36)	
JMDC(JP)	<1.80	1.05	0.67(0.12–3.86)	
Meta-analysis	<1.05	1.31	0.83(0.67-1.02)	

0.12

0.25

0.50

1.0

2.0

4.0

33

Summary

Hypothesis

 Does exposure to GLP-1 receptor agonists have a different risk of experiencing acute liver injury within time from day after exposure start to exposure end, relative to DPP-4 inhibitors, among the population with Type 2 diabetes mellitus?

Summary

- Does exposure to GLP-1 receptor agonists have a different risk of experiencing acute liver injury within time from day after exposure start to exposure end, relative to DPP-4 inhibitors, among the population with Type 2 diabetes mellitus?
- No evidence of difference in risk

Summary

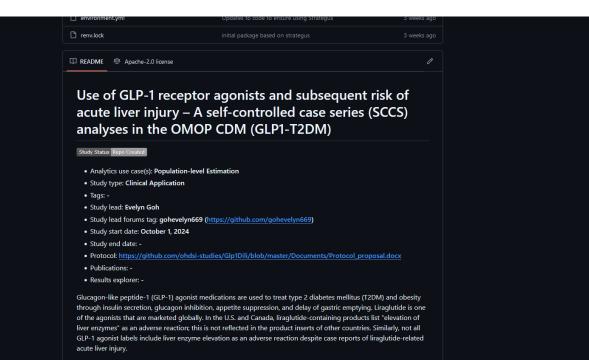
- Does exposure to GLP-1 receptor agonists have a different risk of experiencing acute liver injury within time from day after exposure start to exposure end, relative to DPP-4 inhibitors, among the population with Type 2 diabetes mellitus?
- No evidence of difference in risk
- For those who are worried, reassuring evidence

Next Steps

Next: Potential future areas of research

- Comparator: SGLT2
- Secondary outcomes
- 1. Elevated ALT, ALP, and/or bilirubin liver enzymes
 - Any one of the following lab test combinations:
 - \geq 5 x upper limit of normal (ULN = 41 U/L) alanine aminotransferase (ALT)
 - \geq 2 x ULN (ULN = 130 U/L) alkaline phosphatase (ALP)
 - \geq 3 x ULN ALT (ULN = 41 U/L) <u>and</u> >2 x ULN bilirubin (ULN = 24 μ mol/L)
 - At least 1 confirmation of normal liver enzyme during the 90 days prior to index date.
 - At least 90 days of observation period

2. Cholelithiasis and/or cholecystitis by diagnostic code



Next: Potential future areas of research

- Comparator: SGLT2
- Secondary outcomes
- SCCS
- Subpopulation analysis
- More databases

Next: Running the Package

In light of increased GLP-1 usage globally, this study aims to evaluate the risk of acute liver injury in T2DM users of GLP-1 agonists.

Next: Atlas and ShinyApp

ATLAS: <u>http://34.148.35.102/#/home</u>

ShinyApp

Next: Additional Data Sources

- U.S. Optum DoD
- Singapore Khoo Teck Phuat Hospital

Next: Recruitment

• Recruitment

• Email: <u>e0983111@u.nus.edu</u>

• Especially!!! Asia!!! Please!!!

Acknowledgements

Thank you very much!

Evelyn Goh | National University of Singapore e0983111@u.nus.edu