Leveraging Large Language Model for Populating OMOP Oncology CDM from the EHR : Feasibility Study & PRESENTER: Seng Chan You

### INTRODUCTION

- The Oncology CDM Working Group developed ulletthe OMOP Oncology Extension to support the integration of cancer-specific information into the OMOP CDM.
- Despite these advancements, much of the lacksquarecancer-data in EHR remains in unstructured formats, making it challenging to utilize and standardize.
- language models (LLMs) Generative large  $\bullet$ promising solution to these present a challenges, by leveraging the in-context learning capabilities of LLMs.
- Among several candidate applications to validate feasibility, we focused on whether LLM-derived cancer data can be used to define cancer stage at diagnosis in accordance with updates to the AJCC staging system.

# **METHODS** Data sources

- We obtained unstructured pathology and radiology reports for patients diagnosed with Hospital colorectal at Severance cancer between 2010 and 2023.
- A random sample of 1,000 individuals was

#### Prompt design

We interacted with GPT-40 via zero-shot prompting through the OpenAI API. A total of 20 reports were sampled to develop prompts to extract cancer data (Table 1). All output was compiled into a JSON format.

#### **Evaluation**

- We classified the cancer stage at diagnosis using based on the 8th edition of the AJCC TNM staging system. We compared the LLM-derived cancer stage at diagnosis with the TNM values retrieved from the EHRs database.
- Additionally, we defined the cancer stage using

In this study, we developed strategy to extract  $\bullet$ the cancer information from unstructured pathology and radiology reports of patients with colorectal cancer using state-of-the-art LLM.

selected for inclusion in the study. We used 1,579 radiology and 2,632 pathology reports documented within 30 days before or 120 days after initial cancer diagnosis.

both the 7th and 8th editions of the AJCC staging system and illustrated the changes in cancer stage, demonstrating the usefulness and of the LLM-derived flexibility cancer information.

# **Generative LLM can be used to populate Oncology CDM from the unstructured EHRs**

| Pathology rep     |                         |            |                                |               |        | AJCC sta                          | aging fro | m EHR     |       |           |           |             |                       |  |
|-------------------|-------------------------|------------|--------------------------------|---------------|--------|-----------------------------------|-----------|-----------|-------|-----------|-----------|-------------|-----------------------|--|
| Category          | Descriptor              | Category   | Descriptor                     |               |        | 0                                 | I         | ПА        | ШΒ    | ПС        | ШA        | ШВ          | ШС                    |  |
| Feature           | Size                    | Lymph node | Metastasis site                |               | 0<br>T | 69                                | 1         | 1         | 0     | 0         | 0         | 0           | 1                     |  |
|                   | Histologic grade        |            | Metastasis count               |               | Т      | 2<br>1                            | 234       | 7<br>116  | 0     | 0         | 0         | 3           | 0                     |  |
|                   | Histologic type         | Biomarkor  | BRAF mutation                  |               | ΠВ     | 0                                 | 0         | 0         | 11    | 0         | 0         | 0           | 0                     |  |
|                   | Location                |            | KRAS mutation                  | AJCC          | ПС     | 1                                 | 0         | 0         | 0     | 3         | 0         | 0           | 0                     |  |
|                   | Procedure               |            | Ki-67 index                    | staging       | ША     | 0                                 | 1         | 0         | 0     | 0         | 18        | 0           | 0                     |  |
|                   | Tumor status            |            | MLH1                           | from LLM      | ШВ     | 0                                 | 0         | 1         | 0     | 0         | 0         | 99          | 4                     |  |
| Invasion          | Depth of invasion       |            | MSH2                           |               | ШС     | 0                                 | 0         | 0         | 0     | 0         | 0         | 1           | 14                    |  |
|                   | Lymphovascular inva     |            | MSH6                           |               | IVA    | 0                                 | 15        | 13        | 0     | 0         | 1         | 5           | 2                     |  |
|                   | sion                    |            |                                |               | IVB    | 0                                 | 1         | 2         | 1     | 0         | 0         | 0           | 0                     |  |
|                   | Perineural invasion     |            | Microsatellite instab<br>ility | Figure 2. Com | paris  | on of                             | 0<br>TNM  | 5<br>stag | ing a | 1<br>CCOr | 0<br>ding | 2<br>to the | <sup>2</sup><br>e AJC |  |
|                   | Tumor budding           |            | Mitotic count                  |               |        | TNM staging from AJCC 7th edition |           |           |       |           |           |             |                       |  |
|                   | Tumor deposits          |            | NRAS mutation                  |               |        |                                   |           |           |       |           |           |             |                       |  |
| Margin            | Basal margin            |            | PMS2                           |               |        | 0                                 | I         | ΠА        | А П   | В         | ПС        | ША          | ШВ                    |  |
|                   | Circumferential marg in | Other      | Post<br>treatment/Procedu      |               | 0<br>I | 75<br>0                           | 0<br>245  | 0<br>0    | (     | )<br>)    | 0<br>0    | 0<br>0      | 0<br>0                |  |
|                   | Distal margin           |            | re status                      |               | ΠА     | 0                                 | 0         | 123       | 3 (   | C         | 0         | 0           | 0                     |  |
|                   | Lateral margin          |            |                                | TNM           | ΠВ     | 0                                 | 0         | 0         | 1     | 3         | 0         | 0           | 0                     |  |
|                   | Proximal margin         |            |                                | staging       | ПС     | 0                                 | 0         | 0         | (     | )         | 4         | 0           | 0                     |  |
|                   | Resection margin        |            |                                | from          | ША     | 0                                 | 0         | 0         | (     | )         | 0         | 19          | 0                     |  |
| Radiology reports |                         |            | AJCC 8th                       | ШB            | 0      | 0                                 | 0         | (         | )     | 0         | 0         | 105         |                       |  |
| Feature           | Tumor location          |            |                                | edition       | ШС     | 0                                 | 0         | 0         | (     | )         | 0         | 0           | 0                     |  |
|                   | Tumor status            | _          |                                |               | IVA    | 0                                 | 0         | 0         | (     | C         | 0         | 0           | 0                     |  |
|                   | Size                    |            |                                |               | IVB    | 0                                 | 0         | 0         | (     | )         | 0         | 0           | 0                     |  |
|                   | JIZC                    |            |                                |               | IVC    | 0                                 | 0         | 0         | (     | )         | 0         | 0           | 0                     |  |

**Figure 1**. Overall performance of GPT-40 on classification of cancer stage

| Pathology reports |                         |            |                                        |                                                                    |                                   |         | ļ        | AJCC sta | aging fro | m EHR |      |     |        |        |     |     |
|-------------------|-------------------------|------------|----------------------------------------|--------------------------------------------------------------------|-----------------------------------|---------|----------|----------|-----------|-------|------|-----|--------|--------|-----|-----|
| Category          | Descriptor              | Category   | Descriptor                             |                                                                    |                                   | 0       | I        | ШΑ       | ШΒ        | ШС    | ША   | ШВ  | ШС     | IVA    | IVB | IVC |
| Feature           | Size                    |            | Metastasis site                        |                                                                    | 0                                 | 69      | 1        | 1        | 0         | 0     | 0    | 0   | 1      | 3      | 0   | 0   |
|                   | Histologic grade        | Lymph node | Metastasis count                       |                                                                    | I<br>                             | 2       | 234      | 7        | 0         | 0     | 0    | 1   | 0      | 0      | 1   | 0   |
|                   | Histologic type         |            | BRAF mutation                          |                                                                    | ША                                | 1       | 1        | 116      | 1         | 0     | 0    | 3   | 0      | 1      | 0   | 0   |
|                   | Location                | Biomarker  | KRAS mutation                          |                                                                    | пс                                | 1       | 0        | 0        | 0         | 3     | 0    | 0   | 0      | 0      | 0   | 0   |
|                   | Procedure               |            | Ki-67 index                            | staging<br>from LLM                                                | ШA                                | 0       | 1        | 0        | 0         | 0     | 18   | 0   | 0      | 0      | 0   | 0   |
|                   | Tumor status            |            | MLH1                                   |                                                                    | ШВ                                | 0       | 0        | 1        | 0         | 0     | 0    | 99  | 4      | 0      | 0   | 1   |
| Invasion          | Depth of invasion       |            | MSH2                                   |                                                                    | ШС                                | 0       | 0        | 0        | 0         | 0     | 0    | 1   | 14     | 0      | 0   | 0   |
|                   | Lymphovascular inva     |            | MSH6                                   |                                                                    | IVA                               | 0       | 15       | 13       | 0         | 0     | 1    | 5   | 2      | 9      | 2   | 1   |
|                   | sion                    |            |                                        |                                                                    | IVB                               | 0       | 1        | 2        | 1         | 0     | 0    | 0   | 0      | 0      | 2   | 1   |
|                   | Perineural invasion     |            | Microsatellite instab                  |                                                                    | IVC                               | 0       | 0        | 5        | 1         | 1     | 0    | 2   | 2      | 4      | 2   | 2   |
|                   |                         |            | ility                                  | Figure 2 Comparison of TNIM staging according to the AICC editions |                                   |         |          |          |           |       |      |     |        |        |     |     |
|                   | Tumor budding           |            | Mitotic count                          |                                                                    |                                   |         |          | 1 5145   |           |       |      |     |        |        |     |     |
|                   | Tumor deposits          |            | NRAS mutation                          |                                                                    | TNM staging from AJCC 7th edition |         |          |          |           |       |      |     |        |        |     |     |
| Margin            | Basal margin            |            | PMS2                                   |                                                                    |                                   | 0       | I        | ΠА       | νП        | B I   | IC I | ШΑ  | ШВ     | ШС     | IVA | IVB |
|                   | Circumferential marg in | Other      | Post<br>treatment/Procedu<br>re status |                                                                    | 0<br>I                            | 75<br>0 | 0<br>245 | 0        | (         | )     | 0    | 0   | 0<br>0 | 0<br>0 | 0   | 0   |
|                   | Distal margin           |            |                                        |                                                                    | ПА                                | 0       | 0        | 123      | 3 (       | )     | 0    | 0   | 0      | 0      | 0   | 0   |
|                   | Lateral margin          |            |                                        | ТММ                                                                | ΠВ                                | 0       | 0        | 0        | 1         | 3     | 0    | 0   | 0      | 0      | 0   | 0   |
|                   | Proximal margin         |            |                                        | staging                                                            | ПС                                | 0       | 0        | 0        | (         | )     | 4    | 0   | 0      | 0      | 0   | 0   |
|                   | Resection margin        |            |                                        | from                                                               | ША                                | 0       | 0        | 0        | (         | )     | 0    | 19  | 0      | 0      | 0   | 0   |
| Radiology reports |                         |            | AJCC 8th                               | ШВ                                                                 | 0                                 | 0       | 0        | (        | )         | 0     | 0    | 105 | 0      | 0      | 0   |     |
| Feature           | Tumor location          |            |                                        | edition                                                            | ШС                                | 0       | 0        | 0        | (         | )     | 0    | 0   | 0      | 15     | 0   | 0   |
|                   |                         |            |                                        |                                                                    | IVA                               | 0       | 0        | 0        | (         | )     | 0    | 0   | 0      | 0      | 48  | 0   |
|                   |                         | _          |                                        |                                                                    | IVB                               | 0       | 0        | 0        | (         | )     | 0    | 0   | 0      | 0      | 0   | 7   |
|                   | JIZE                    |            |                                        |                                                                    | IVC                               | 0       | 0        | 0        | (         | )     | 0    | 0   | 0      | 0      | 10  | 9   |

#### **RESULTS**

- A total of 4,211 pathology and radiology reports
- A major difference between 7th and 8th edition By leveraging generative LLM, we will is that the inclusion of new stage involving
  - standardize the cancer-specific data from the

from 1,000 patients were analyzed.

- The agreement between LLM-derived AJCC stage and AJCC stage from structured EHRs is presented using confusion matrix in Figure 1. The overall accuracy of LLM-derived staging was 0.86. Cohen's Kappa was 0.82 (95%) confidence interval [CI], 0.78-0.85).
- Figure 2 shows the comparison of TNM staging  $\bullet$ groups according to the AJCC 7th and 8th edition.

peritoneal metastasis (stage IVC).

As a result, 19 patients, originally classified as stage IVA or IVB under the 7th edition, were reclassified as stage IVC.

## **CONCLUSION**

- is ongoing study. Generative LLMs • This demonstrate feasibility in automating the extraction of structured cancer information from unstructured EHRs.
- This approach has the potential to construct well-fined resources for future research, reducing the workload of human experts.

EHR based on the OMOP Oncology Extension.

- Subin Kim<sup>1,2</sup>, Jeong Eun Choi<sup>1,2</sup>, Chang Jun Ko<sup>3</sup>, Seng Chan You<sup>1,2</sup>
- <sup>1</sup>Dept. of Biomedical Systems Informatics, Yonsei University College of Medicine
  - <sup>2</sup>Institute for Innovation in Digital Health Care, Yonsei University

<sup>3</sup>Dept. of Health Informatics and Biostatistics, Graduate School of Public Health, Yonsei University



