

Causal Learning with Large-Scale Propensity Scores to Predict Treatment Outcomes : A Study of Arrhythmia in Adolescents with Attention-deficit/hyperactivity disorder

Junhyuk Chang, PharmD¹, Dong Yun Lee, MD², Rae Woong Park, MD, Ph.D.^{1,2} ¹Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea ²Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea

Background

- Adolescents with ADHD and comorbid depression serotonin reuptake inhibitors (SSRIs)
- Concurrent use of MPH and SSIRs may increase car
- The causal machine learning method is able to es calculating average treatment effects.
- This study aims to analyze the treatment effect arrhythmia occurrence with a causal forest model

Methods

Figure 1. Overall study framework

1. Data collection

- HIRA-ADHD database was converted to OMOP-CDM
- Data was collected from Jan 1, 2016 to Dec 31, 2020

2. Cohort definition

Target Cohort

- MPH-used patients with an ADHD diagnosis aged between 10 and 19
- Patients with a depression record
- Patients without other anti-ADHD agents and previous antidepressants

Outcome Cohort: Occurrence of arrhythmia

3. Data preprocessing

- Split: 70% for training / 30% for testing, ensuring the same outcome prevalence in both sets
- FeatureExtraction
- Initial screening was conducted to exclude rare covariates by 10-fold cross-validation

4. Estimate average treatment effect

- Estimated the average treatment effect (ATE) using constructed causal forest model
- set divided according to CATEs
- identify characteristics of high and low CATE groups

Contact: contact@ohdsi.org

•
•
•
•
•

Database: Health Insurance Review and Assessment Service – Attention Deficit/Hyperactivity Disorder (HIRA-ADHD) database which contained ADHD patient data from nationwide claims data

Extracted patient baseline covariates to employ a large-scale propensity score utilizing the

• Using rank-ATE (RATE), we estimated treatment heterogeneity based on the quintiles of the test

We compared the top 5 variables based on variable importance from the causal forest model to

Results

Among the total of 11,163 MPH-used patients, 7,873 patients were prescribed SSRIs and 58 patients had occurrences of arrhythmia

Figure 2 shows the ATEs of the quantile groups in increasing order, with values of -0.5, -0.1, 0.1, 0.1, and 0.4

Among ATE of quantile groups, the ATE of the Q5 group is statistically significant (95%) CI: 0.1-0.8).

The estimated RATE was 0.008 (95% CI: 0.002 - 0.015),which confirmed the heterogeneity between quantile groups

-2.0 -1.5 Average treatment effect of SSRI treatment on arrhythmia (%)

Figure 2. Average treatment effect of quantile groups

Figure 3 represents the density of top 5 baseline covariates between high and low CATE groups

Figure 3. Density of top 5 covariates

Conclusions

This study suggests that while SSRI treatment did not significantly affect arrhythmia Individualized treatment rule accounting for this heterogeneity could modify guidelines for concurrent use of MPH and SSRIs

Acknowledgements

This research was funded a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HR16C0001) and this research was supported by a Government-wide R&D Fund project for infectious disease research (GFID), Republic of Korea (grant number: HG22C0024, KH124685).

Q5

Q4

Q3

Q2

Q1

2.0

Average treatment effect across quantiled CATE groups lower risk of arrhythmia higher risk of arrhythmia

