Feasibility of Integrating DICOM Headers into the OMOP Medical Imaging CDM : A Pilot Study Using Chest CT Data

PRESENTER: Kyulee Jeon

INTRODUCTION

- Advancement in healthcare artificial intelligence demands integration of diverse data sources, yet OMOP CDM lacks support for imaging data
- While Medical Image Workgroup proposed OMOP CDM extension for medical imaging to incorporate Digital Imaging and Communication in Medicine (DICOM) into OMOP CDM, it remains theoretical without implementation
- This study implements OMOP CDM Imaging

METHODS

Step 1: Data Selection and Processing

- Extracted DICOM metadata (tag-value pairs) from randomly selected 200 chest CT studies of lung cancer patients (Severance Hospital, 2014-2023)
- Excluded metadata with text values >16 characters and data already harmonized in OMOP CDM (e.g., patient sex), while keeping only first instance of redundant series-level data

Step 2: Semantic Standardization

• Mapped all DICOM tags to temporary custom concept IDs from DICOM2OMOP github

Step 3: CDM Extension Implementation

- Built Image_occurrence table for imaging events and Measurement table with DICOM metadata (mapping tags to measurement_concept_id and storing values as value_source_value, value_as_number, or value_concept_id)
- Created Image_feature table to link measurements with source imaging for traceability

RESULTS

• The comprehensive dataset included 200 CT studies (196 patients) comprising 1,576 series and 225,289 DICOM files (115.5 GiB),

Extension framework using real-world imaging data to evaluate the feasibility of incorporating DICOM headers from chest CT scans into the standardized framework DICOM values were mapped to: (1) SNOMED-CT codes for predefined values in DICOM Standard, (2) custom concept IDs for other code string values, and (3) raw values stored in value_as_number or value_source_value successfully integrated into three tables: Image_occurrence (1,576 rows), Measurement (1,622,381 rows), and Image_feature (1,622,381 rows)

Bridging the Gap: Real-World Implementation of OMOP CDM Imaging Extension

A DICOM file	Processing Steps:			
 Patient ID: PAT123 Study Date: 20230901 Modality: CT Body Part: CHEST KVp: 120 Slice Thickness: 3mm 	1. Structural Processing	2. Semantic Mapping		3. Value Processing
	<u>Coded Values</u> - (0008,0060) Modality: "CT" - (0018,0015) Body Part: "CHEST"	Tags to Customed Concept IDs- (0018,0060) KVp \rightarrow 2128000358- (0018,0022) Slice Thickness \rightarrow 2128000357		$\frac{\text{Tag Mapping Results}}{2128000358} \rightarrow \text{measurement_concept_id} \\ 2128000357 \rightarrow \text{measurement_concept_id} \\ \end{array}$
	Numoric Valuos	Values to Customed Concept IDs		Numeric Values

/Study_001/Series_001/Instance_001.dcm

Image_occurrence Table

- image_occurrence_date: 2023-09-01

- modality_concept_id: 2128008068

- anatomic_site_concept_id: 3703885

- local_path: /Study_001/Series_001/

- image_occurrence_id: 1

- visit_occurrence_id: ###

- procedure_occurrence_id: ***

- person_id: 12345

- "CT" → 2128008068

Values to Standard Concept IDs - "CHEST" → 37303885 (Vocab: SNOMED)

$120 \rightarrow \text{value}_\text{as}_\text{number}$ $3 \rightarrow \text{value}_\text{as}_\text{number}$

OMOP Tables:

Measurement Table

- person_id: 12345

- measurement_id: 11
- measurement_date: 2023-06-15
- measurement_concept_id: 2128000358

- value_as_number: 120

- person_id: 12345

- measurement_id: 12

- measurement_date: 2023-06-15
- measurement_concept_id: 2128000357
- value_as_number: 3

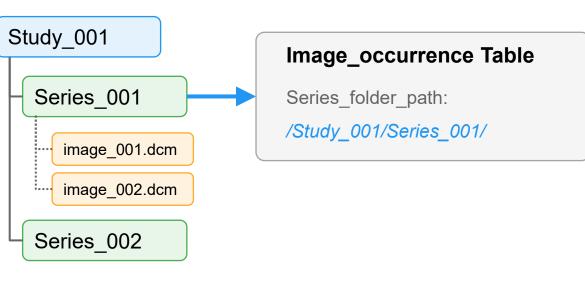
Image_feature Table

- person_id: 12345

- image_occurrence_id: 1
- image_feature_event_field_concept_id: 1147330
- image_feature_event_id: 11
- image_feature_concept_id: 2128000358

- person_id: 12345

- image_occurrence_id: 1
- image_feature_event_field_concept_id: 1147330
- image_feature_event_id: 12
- image_feature_concept_id: 2128000357


Example of DICOM metadata:

Tag	Attribute Name	Value (Example)		
(0008,0020)	Study Date	20230901		
(0008,0060)	Modality	СТ		
(0008,0070)	Manufacturer	Siemens Healthineers		
(0008,1090)	Manufacturer's Model Name	SOMATOM Force		
(0018,0015)	Body Part Examined	CHEST		
(0018,0022)	Scan Options	HELICAL MODE		
(0018,0050)	Slice Thickness	3		
(0018,0060)	KVP	120		
(0018,1041)	Contrast/Bolus Volume	0		
(0018,9345)	CTDIvol	4.13998747826087 (mGy)		
(0028,0004)	Photometric Interpretation	MONOCHROME2		

Hierarchical Structure of DICOM:

In DICOM, a single imaging study can contain multiple series of images acquired with different protocols and parameters.
This framework processes imaging data at the series-level as its basic unit.

DICOM Archive Server

Why It Matters for OHDSI:

 This implementation opens doors for incorporating imaging biomarkers into observational studies, enabling new research questions that combine imaging and clinical data at scale.

Next Steps:

- Map imaging vocabularies (e.g., DICOM, RadLex) to OMOP concepts
- Define essential DICOM tags for observational research
- Handle long free-text metadata such as Protocol Name, Series description

Kyulee Jeon^{1,2}, Woo Yeon Park³, Teri Sippel Schmidt³, Paul Nagy³, Seng Chan You^{1,2}

Contact:

- Kyulee Jeon (jklee320@yuhs.ac)
- Seng Chan You (chandryou@yuhs.ac)

JOHNS HOPKINS

SCHOOL of MEDICINE

