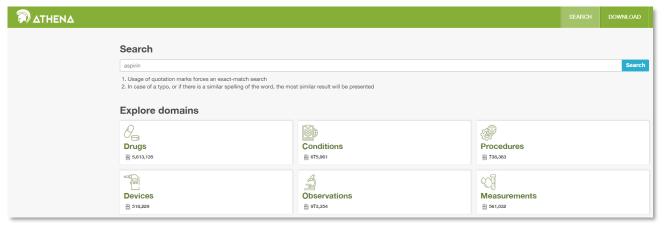
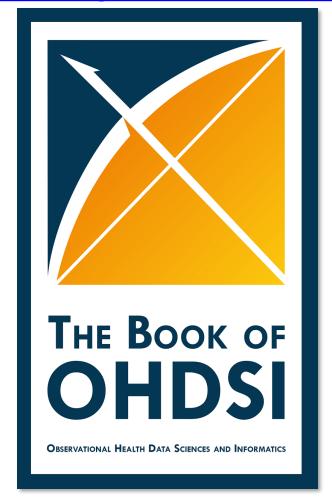


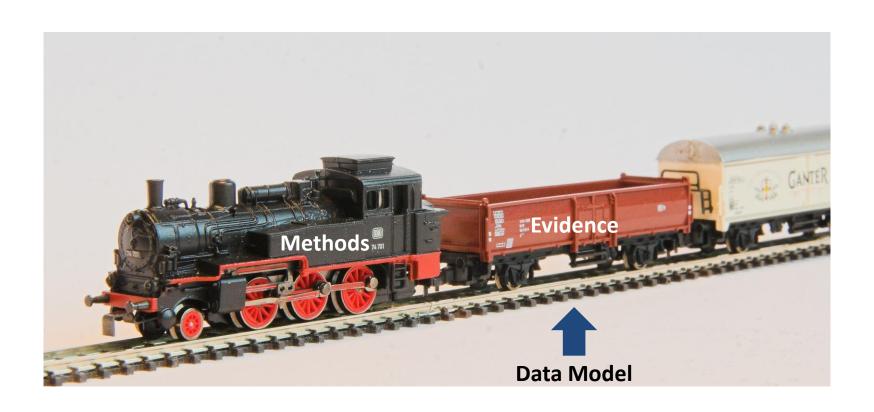
OMOP CDM and Vocabulary



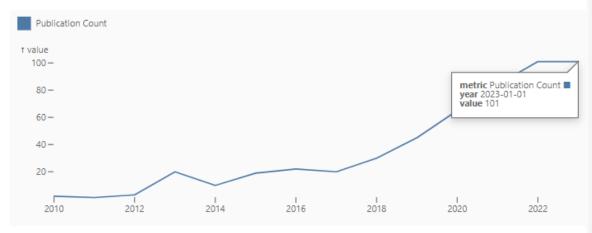
Helpful Bookmarks


https://ohdsi.github.io/CommonDataModel/

https://athena.ohdsi.org/



https://ohdsi.github.io/TheBookOfOhdsi/



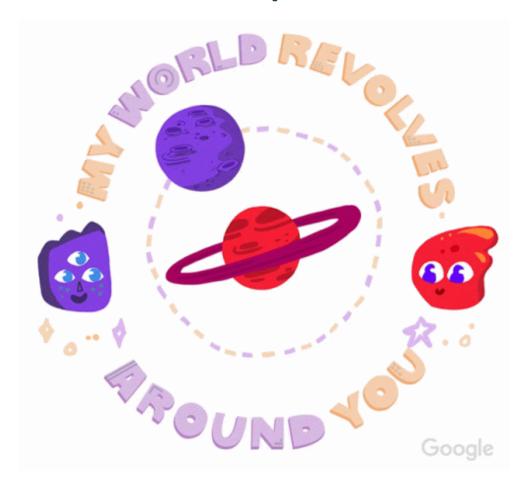
Why a Common Data Model

Why a Common Data Model

	Journal	Creation ↓ Date	Authors
Predictive Models for Assessing Patients' Response to Treatment in Metastatic Prostate Cancer: A Systematic Review.	European urology open science	2024/04/10 04:15	Lawlor, Ailbhe Lin, Carol Gomez Rivas, Juan Ibanez, Laura Abad Lopez, Pablo Willemse, Peter-Paul Imran Omar, Muhammad Remmers, Sebastiaan Cornford, Philip Rajwa, Pawel Nicoletti, Rossella Gandaglia, Giorgio Yuen-Chun Teoh, Jeremy Moreno Sierra, Jesus Golozar, Asieh Bjartell, Anders Evans-Axelsson, Susan N'Dow, James Zong, Jihong Ribal, Maria J Roobol, Monique J Van Hemelrijck, Mieke Beyer, Katharina
Converge or Collide? Making Sense of a Plethora of Open Data Standards in Health Care.	Journal of medical Internet research	2024/04/09 16:53	Tsafnat, Guy Dunscombe, Rachel Gabriel, Davera Grieve, Grahame Reich, Christian
Research Protocol for an Observational Health Data Analysis on the Adverse Events of Systemic Treatment in Patients with Metastatic Hormonesensitive Prostate Cancer: Big Data Analytics Using the PIONEER Platform.	European urology open science	2024/04/04 04:11	Rajwa, Pawel Borkowetz, Angelika Abbott, Thomas Alberti, Andrea Bjartell, Anders Brash, James T Campi, Riccardo Chilelli, Andrew Conover, Mitchell Constantinovici, Niculae Davies, Eleanor De Meulder, Bertrand Eid, Sherrine Gacci, Mauro Golozar, Asieh Hafeez, Haroon Haque, Samiul Hijazy, Ayman Hulsen, Tim Josefsson, Andreas Khalid, Sara Kolde, Raivo Kotik, Daniel Kurki, Samu Lambrecht, Mark Leung, Chi-Ho Moreno, Julia Nicoletti, Rossella Nieboer, Daan Oja, Marek Palanisamy, Soundarya Prinsen, Peter Reich, Christian Raffaele Resta, Giulio Ribal, Maria J Gomez Rivas, Juan Smith, Emma Snijder, Robert Steinbeisser, Carl Vandenberghe, Frederik Cornford, Philip Evans-Axelsson, Susan N'Dow, James Willemse, Peter-Paul M
Use of Recommended Neurodiagnostic Evaluation Among Patients With Drug- Resistant Epilepsy.	JAMA neurology	2024/04/01 16:08	Spotnitz, Matthew Ekanayake, Cameron D Ostropolets, Anna McKhann, Guy M Choi, Hyunmi Ottman, Ruth Neugut, Alfred I Hripcsak, George Natarajan, Karthik Youngerman, Brett E
Increase transparency and reproducibility of real-world evidence in rare diseases through disease-specific Federated Data Networks. [2]	Pharmacoepidemiology and drug safety	2024/04/01 02:03	van Baalen, Valerie Didden, Eva-Maria Rosenberg, Daniel Bardenheuer, Kristina van Speybroeck, Michel Brand, Monika
Correlation of Socioeconomic and Environmental Factors With Incidence of Crohn Disease in Children and Adolescents: Systematic Review and Meta-Regression.	JMIR public health and surveillance	2024/03/25 11:53	Weidner, Jens Glauche, Ingmar Manuwald, Ulf Kern, Ivana Reinecke, Ines Bathelt, Franziska Amin, Makan Dong, Fan Rothe, Ulrike Kugler, Joachim
Patterns of Comorbidities and Prescribing and Dispensing of Non-steroidal Anti-inflammatory Drugs (NSAIDs) Among Patients with Osteoarthritis in the USA: Real-World Study.	Drugs & aging	2024/03/23 12:21	lde, Joshua Shoaibi, Azza Wagner, Kerstin Weinstein, Rachel Boyle, Kathleen E Myers, Andrew

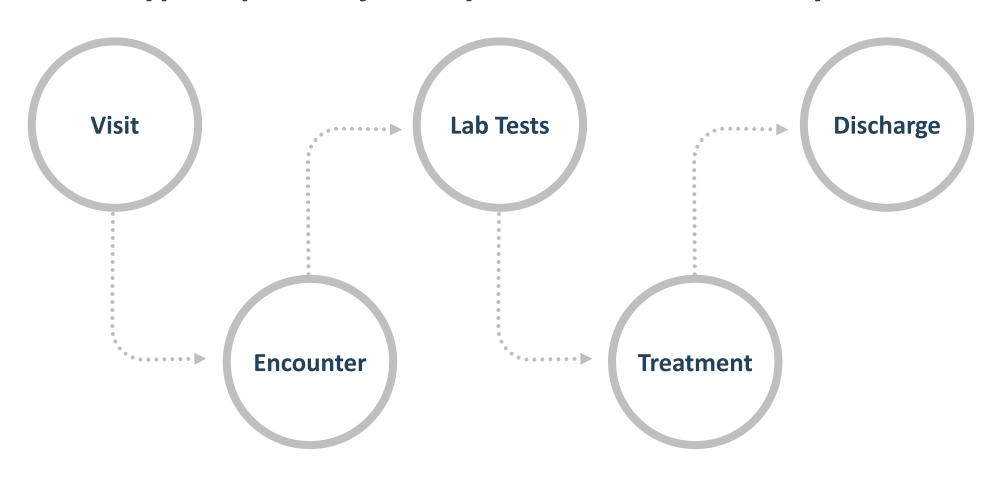
OMOP CDM

The OMOP CDM is a system of tables, vocabularies, and conventions that allow observational health data to be standardized. It is this standard approach that facilitates rapid innovation in the areas of open-source development, methods research, and evidence generation.

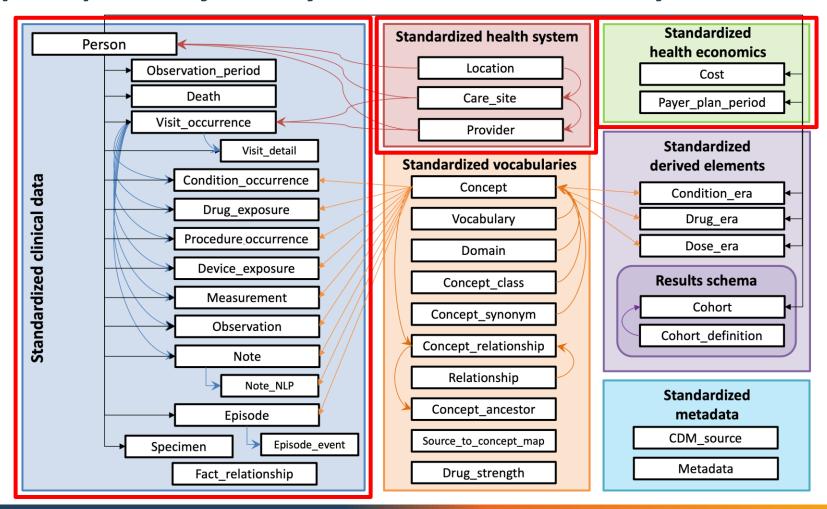


OMOP CDM

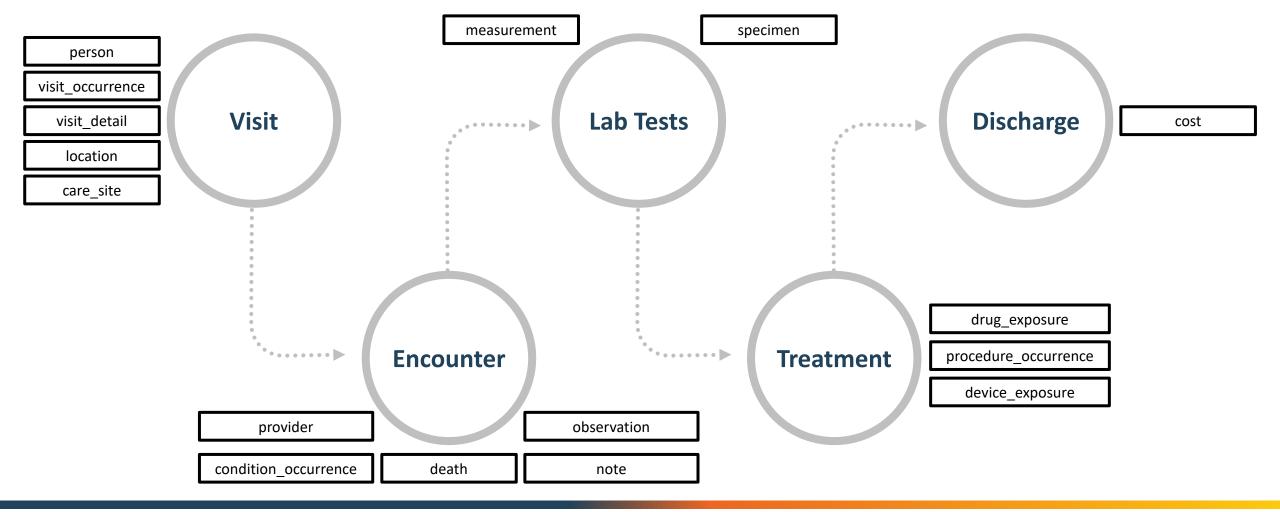
The OMOP CDM is a system of tables, vocabularies, and conventions that allow observational health data to be standardized. It is this standard approach that facilitates rapid innovation in the areas of open-source development, methods research, and evidence generation.



The OMOP CDM is a person-centric model



A typical patient journey within a healthcare system



A typical patient journey within a healthcare system into data

A typical patient journey within a healthcare system into data

OMOP CDM

The OMOP CDM is a system of tables, vocabularies, and conventions that allow observational health data to be standardized. It is this standard approach that facilitates rapid innovation in the areas of open-source development, methods research, and evidence generation.

Conventions

General conventions of the model

General conventions of schemas

General conventions of data tables

General naming conventions of fields

General conventions of domains

Technical conventions

Table-specific conventions

Source data-specific conventions

Technical Conventions

Fields

Variable names across all tables follow one convention:

Notation	Description					
_SOURCE_VALUE	Verbatim information from the source data, typically used in ETL to map to CONCEPT_ID, and not to be used by any standard analytics. For example, CONDITION_SOURCE_VALUE = '787.02' was the ICD-9 code captured as a diagnosis from the administrative claim.					
_ID	Unique identifiers for key entities, which can serve as foreign keys to establish relationships across entities. For example, PERSON_ID uniquely identifies each individual. VISIT_OCCURRENCE_ID uniquely identifies a PERSON encounter at a point of care.					
_CONCEPT_ID	Foreign key into the Standardized Vocabularies (i.e. the standard_concept attribute for the corresponding term is true), which serves as the primary basis for all standardized analytics. For example, CONDITION_CONCEPT_ID = 31967 contains the reference value for the SNOMED concept of 'Nausea'					
_SOURCE_CONCEPT_ID	Foreign key into the Standardized Vocabularies representing the concept and terminology used in the source data, when applicable. For example, CONDITION_SOURCE_CONCEPT_ID = 45431665 denotes the concept of 'Nausea' in the Read terminology; the analogous CONDITION_CONCEPT_ID might be 31967, since SNOMED-CT is the Standardized Vocabulary for most clinical diagnoses and findings.					
_TYPE_CONCEPT_ID	Delineates the origin of the source information, standardized within the Standardized Vocabularies. For example, DRUG_TYPE_CONCEPT_ID can allow analysts to discriminate between 'Pharmacy dispensing' and 'Prescription written'					

Table-specific Conventions

PERSON

Table Description

This table serves as the central identity management for all Persons in the database. It contains records that uniquely identify each person or patient, and some demographic information.

User Guide

All records in this table are independent Persons.

ETL Conventions

All Persons in a database needs one record in this table, unless they fail data quality requirements specified in the ETL. Persons with no Events should have a record nonetheless. If more than one data source contributes Events to the database, Persons must be reconciled, if possible, across the sources to create one single record per Person. The content of the BIRTH_DATETIME must be equivalent to the content of BIRTH_DAY, BIRTH_MONTH and BIRTH_YEAR.

CDM Field	User Guide	ETL Conventions	Datatype	Required	Primary Key	Foreign Key	FK Table	FK Domain
person_id	It is assumed that every person with a different unique identifier is in fact a different person and should be treated independently.	Any person linkage that needs to occur to uniquely identify Persons ought to be done prior to writing this table. This identifier can be the original id from the source data provided if it is an integer, otherwise it can be an autogenerated number.	integer	Yes	Yes	No		

Source data-specific Conventions

Observation Period Considerations for EHR Data

By Melanie Philofsky and the EHR Working Group

The EHR WG convened on July 24, August 7, and August 21, 2020 to discuss the creation of an Observation Period from EHR data. The current and future conventions are not prescriptive enough and leave room for various ways of interpretation. The goals of our discussions were to increase the standardization for the implementation of the OBSERVATION_PERIOD table by providing some general guidelines for determining the start, end, and gaps in Observation Periods. The suggestions we came up with are only "suggestions" at this point. More research should be done to understand how these choices might impact evidence generated using these data. All of these decisions should be tempered by local understanding of patients in the EHR you are ETLing.

Note - These suggestions are not intended for HMO EHR sites since HMO EHR Observation Periods more closely resemble claims data
 Observation Periods.

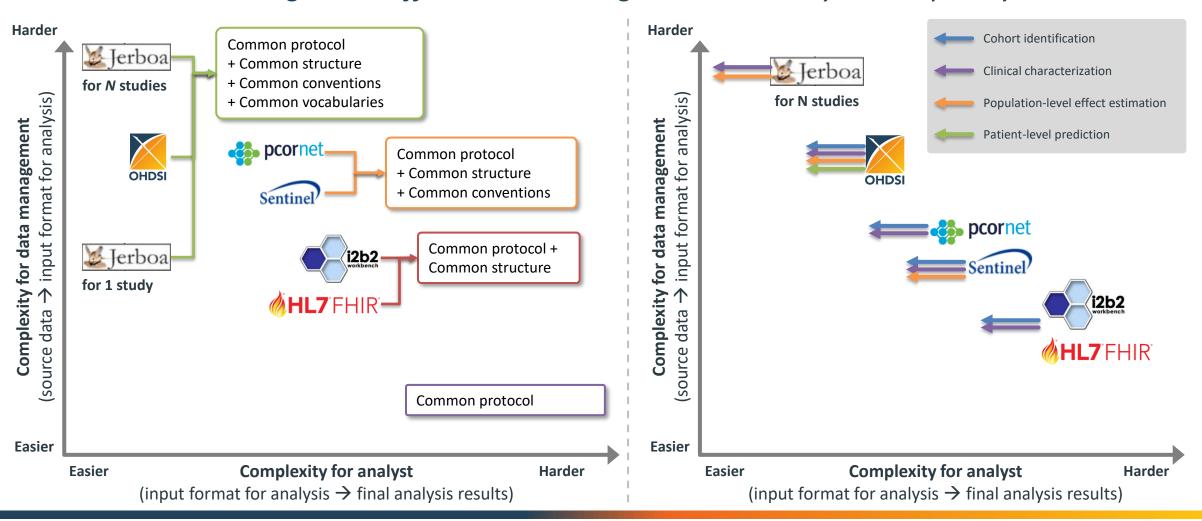
Observation Period Start Date

- Generally an Observation Period does NOT begin before birth, however, it might begin before birth IF the pregnant mother receives care
 recorded in your EHR. The child's record is then split from the mother's record at birth but may retain care given during pregnancy. For
 these children in your dataset, the field observation_period_start_date should be the birth date minus 9 months
- An Observation Period does NOT begin before the implementation of the EHR at your site. Any records prior to implementation are
 probably "history of" record types and not a complete EHR record of clinical events.
- Special consideration should be given to migration from previous EHR, implementation at different sites within your healthcare system, implementation of different modules, etc.

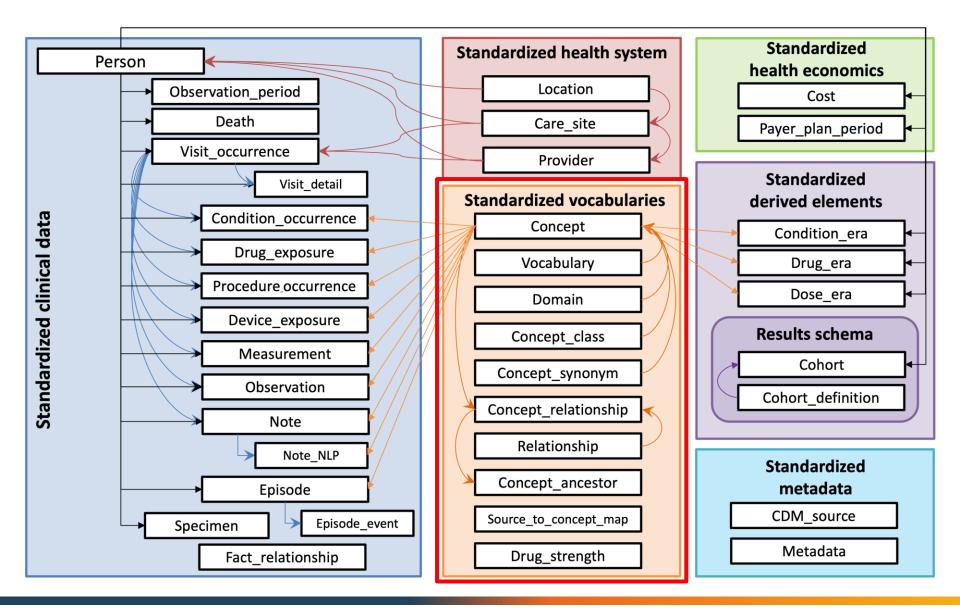
Observation Period end date

Set the **observation_period_end_date** as the first date from the following:

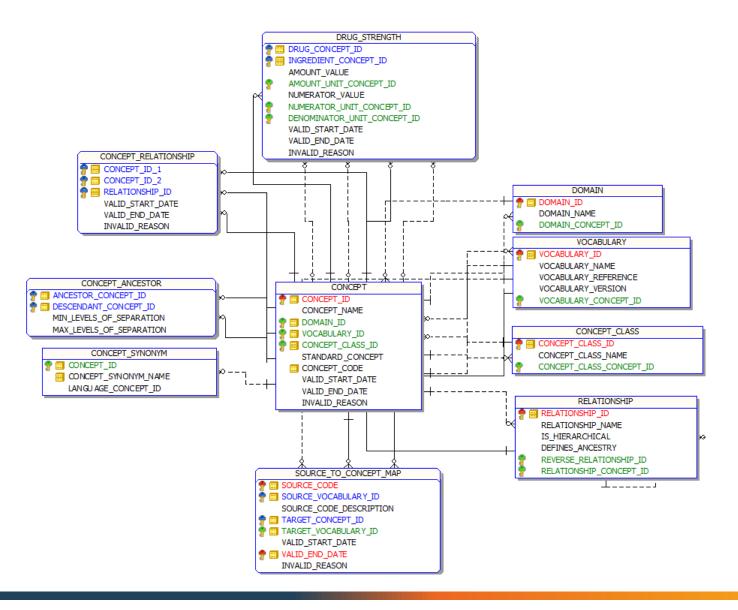
- Date of death + 60 days
 - This is a CDM convention to allow events after death (autopsy, final notes, etc).
- Last clinical event + 60 days
 - The assumption is that person will return to the same health provider if an adverse reaction/complication/unresolved condition occurs.
- Date of the data pull from the system


OMOP CDM

The OMOP CDM is a system of tables, vocabularies, and conventions that allow observational health data to be standardized. It is this standard approach that facilitates rapid innovation in the areas of open-source development, methods research, and evidence generation.

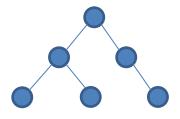

Comparison of common data models

Balancing trade-offs in data management vs. analysis complexity



Vocabularies

OMOP Standardized Vocabularies


OMOP Standardized Vocabularies

All content: concepts in concept

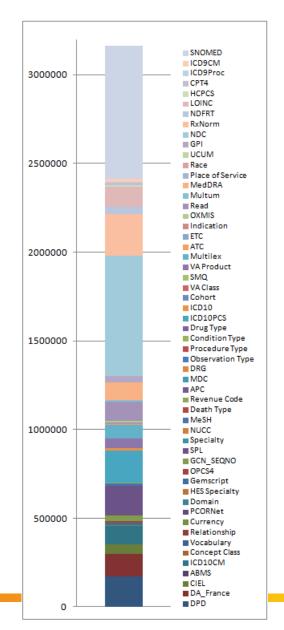
Direct relationships between concepts in concept_relationship

Multi-step hierarchical relationships pre-processed into concept_ancestor

Concept

CONCEPT_ID	313217		Unique identifier in OHDSI			
CONCEPT_NAME	Atrial fibrillation		English description			
DOMAIN_ID	Condition					
VOCABULARY_ID	SNOMED		Domain			
CONCEPT_CLASS_ID	Disorder	K	Vocabulary			
STANDARD_CONCEPT	S	K	Class in vocabulary (SNOMED)			
CONCEPT_CODE	49436004	F	Standard/Non-standard/Classification			
VALID_START_DATE	01-Jan-2002	R.	Startdara, 11011 Startdara, classification			
VALID_END_DATE	31-Dec-2099		Code in vocabulary (SNOMED)			
INVALID_REASON			Valid during time interval			

Mapping to OMOP Standardized Vocabularies



- What is standardized:
 - TABLE_CONCEPT_ID: standard concept the source code maps to, used for analysis
 - TABLE_SOURCE_CONCEPT_ID: concept representation of the source code, helps maintain tie to raw data
 - TABLE_SOURCE_VALUE: original source code as given in the source table, helps to review data quality
- Ways to get a source code to standard code:
 - OMOP Vocabulary (concept relationship)
 - USAGI

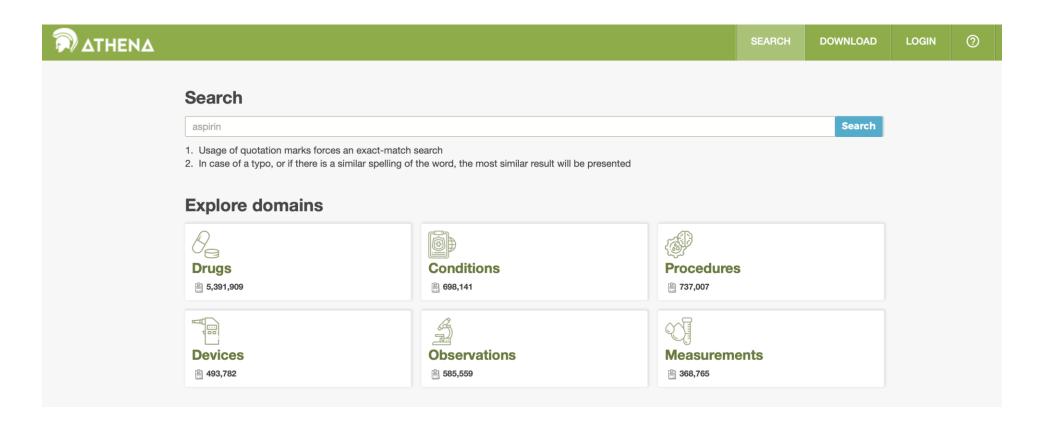
Mapping to OMOP Standardized Vocabularies

- If your source data's codes are in the OMOP vocabularies, you can use it to translate to an OMOP standard
 - For example: ICD9 \rightarrow SNOMED or NDC \rightarrow RxNorm

OMOP Standardized Vocabularies In a Nutshell

What it is:

- Standardized structure to house existing vocabularies used in the public domain
- Compiled standards from disparate public and private sources and some OMOP-grown concepts


What it's not

- Static dataset: the vocabulary updates regularly to keep up with the continual evolution of the sources
- Finished product: vocabulary maintenance and improvement is ongoing activity that requires community participation and support

Demo: ATHENA

https://athena.ohdsi.org/

Find standard concept IDs for the following conditions:

- Asthma
- Plague
- Ingrown toenail

Find standard concept IDs for the following drug ingredients:

- Metformin
- Tolazamide
- Telmisartan

Find standard concept IDs for the following conditions:

Asthma

317009

Plague

434271

Ingrown toenail

4065236, 4290993

Find standard concept IDs for the following drug ingredients:

Metformin

1503297

Tolazamide

1502809

Telmisartan

1317640

- What is the standard concept ID for the ICD10 code E11.9?
 - What domain does E11.9 belong to?
- What is the standard concept ID for the ICD10 code Z02.1?
 - What domain does Z02.1 belong to?
- What ICD10 codes are mapped to the concept ID 443767?
- What is the standard concept ID for the ICD10 code X67.0?

• What is the standard concept ID for the ICD10 code E11.9?

1:1 mapping

– What domain does E11.9 belong to?

Source domain = OMOP domain

What is the standard concept ID for the ICD10 code C78.0?

1:1 mapping

– What domain does C78.0 belong to?

Source domain ≠ OMOP domain

What ICD10 codes are mapped to the concept ID 443767?

n:1 mapping

• What is the standard concept ID for the ICD10 code X67.0?

1:n mapping

Thank you!