
OHDSI for Real World Evidence (RWE)

Patrick Ryan, PhD Vice President, Observational Health Data Analytics, Janssen Research and Development

Assistant Professor, Adjunct, Department of Biomedical Informatics, Columbia University Medical Center

Current status quo in observational research makes it challenging to build trust in evidence

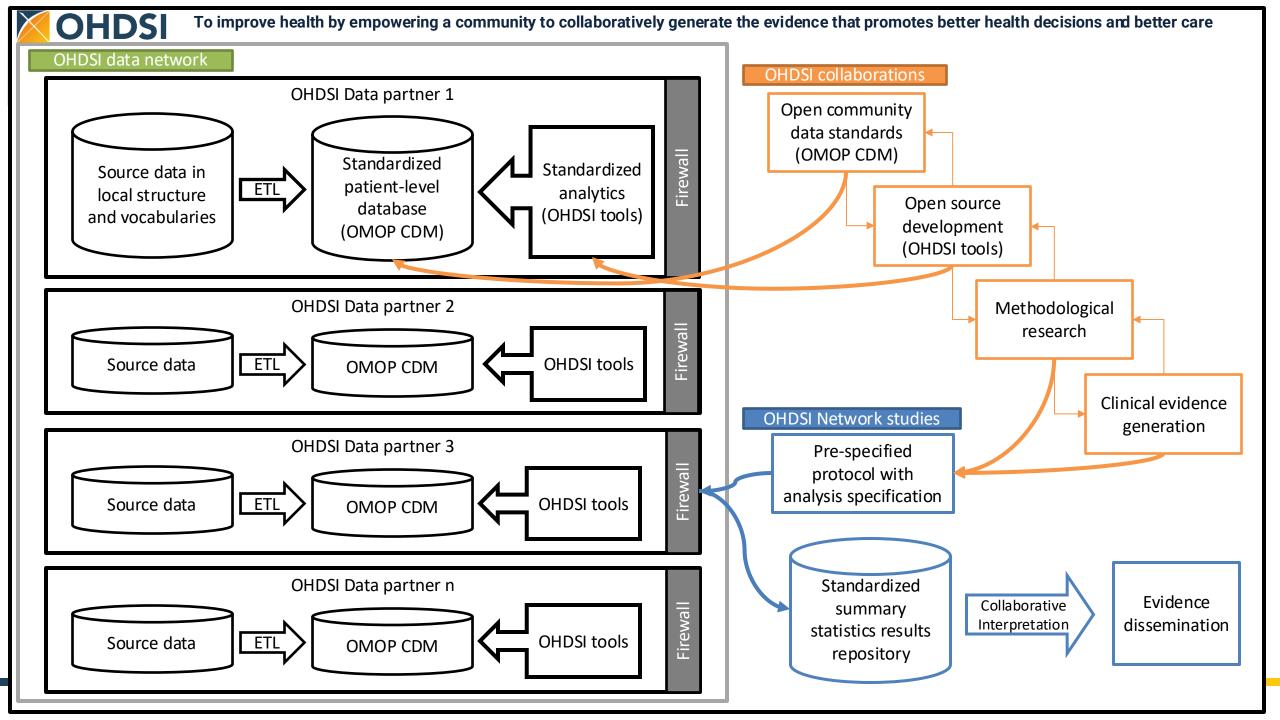
Does the study provide an unbiased effect estimate? Are the findings generalizable to the population of interest?

Desired attributes for reliable evidence

Desired attribute	Question	Researcher	Data	Analysis		Result
Repeatable	Identical	Identical	Identical	Identical	=	Identical
Reproducible	Identical	Different	Identical	Identical	=	Identical
Replicable	Identical	Same or different	Similar	Identical	=	Similar
Generalizable	Identical	Same or different	Different	Identical	=	Similar
Robust	Identical	Same or different	Same or different	Different	=	Similar
Calibrated	Similar (controls)	Identical	Identical	Identical	=	Statistically consistent

OHDSI's mission

To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care



OHDSI collaborators

OHDSI Collaborators

- 4,294 collaborators
- 83 countries
- 21 time zones
- 6 continents

Join the Journey at <u>https://ohdsi.org/</u>

Workgroups led by community

Regional chapters and national nodes

Node	Lead(s)						
Belgium	Liesbet Peeters, Annelies Verbiest,						
	llse Vermeuler						
Denmark	Ismail Gögenur, Martin Høyer Rose,						
	Andreas Weinberger Roser						
Estonia	Raivo Kolde, Sulev Reisberg						
Finland	Eric Fey						
Germany	Ines Reinecke, Michele Zoch						
Greece	Anastasia Farmaki, Pantelis Natsiavas						
	Grigoris Papapostolo						
Israel	Chen Yanovei						
Italy	Lucia Sacchi, Matteo Gabetta						
Luxembourg	Claudine Backes, Andreas Kremer						
	Maria Quaranta						
Netherlands	Renske Los, Aniek Markus						
Norway	Espen Enerly, Siri Larønningen						
Portugal	Patricia Couceiro, Carmen Nogueira						
Snain	Miquel Angel Mayer, Talita Duarte Salles						

Spain......Miguel Angel Mayer, Talita Duarte Salles United Kingdom......Daniel Prieto-Alhambra

Australia

Europe

Peter Rijnbeek

Latin America

Jose Posada

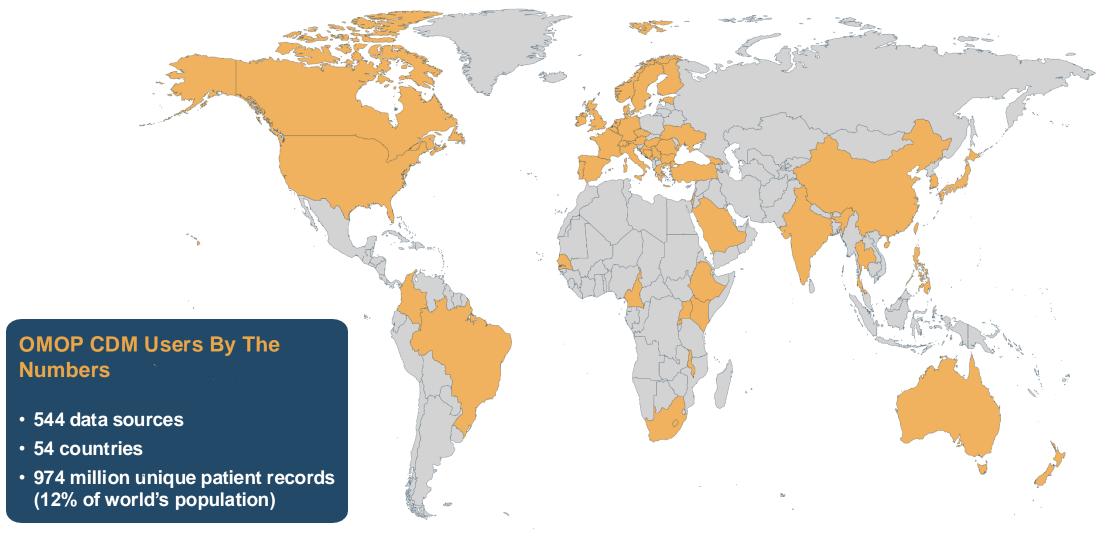
Swetha Kiranmayi Jakkuv

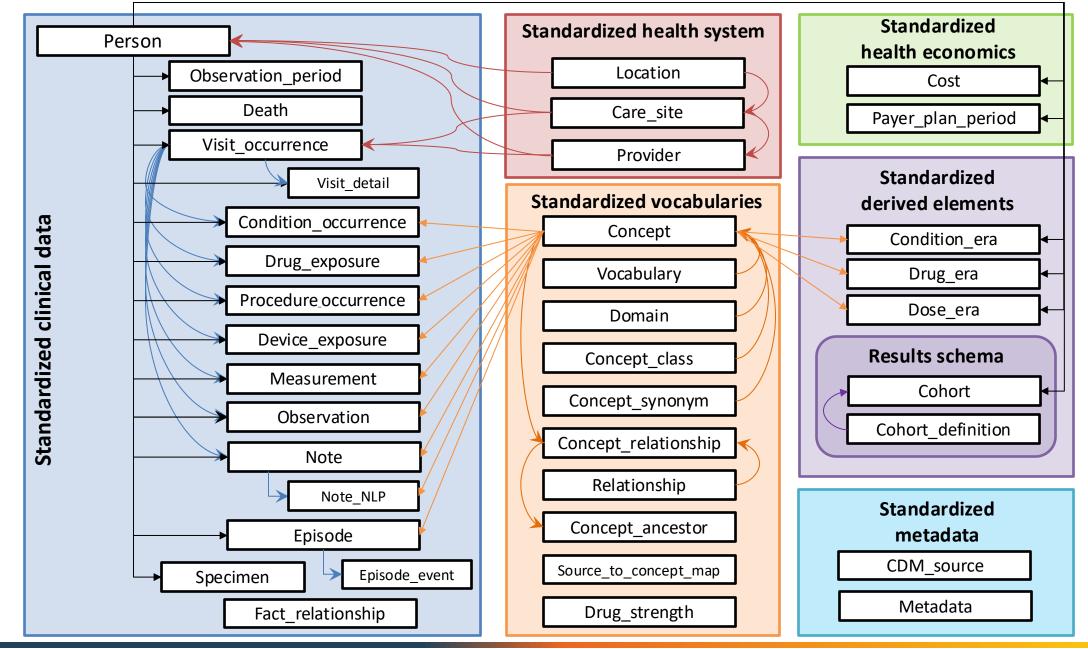
Rae Woong Park

Asia-Pacific (APAC)

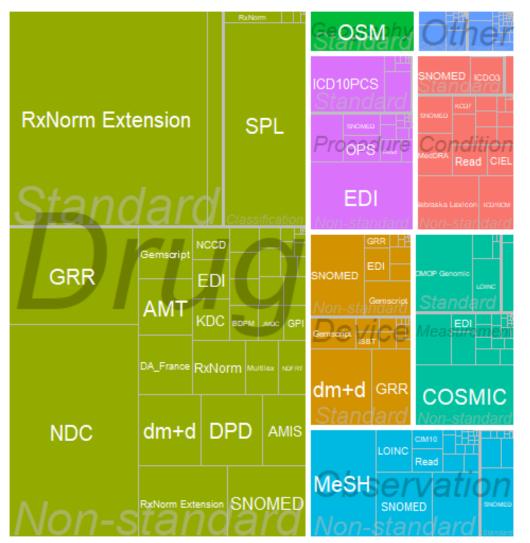
Tatsuo Hiramatsu

Vikram Patil

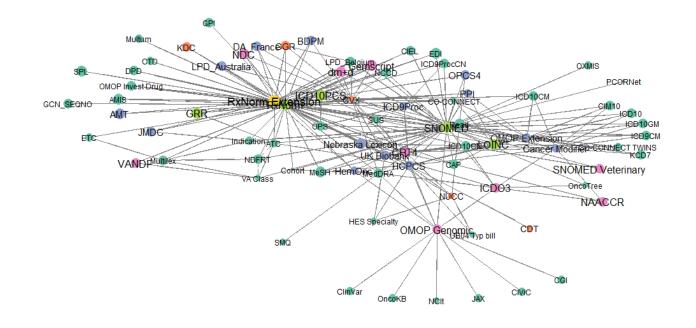

Seng Chan You



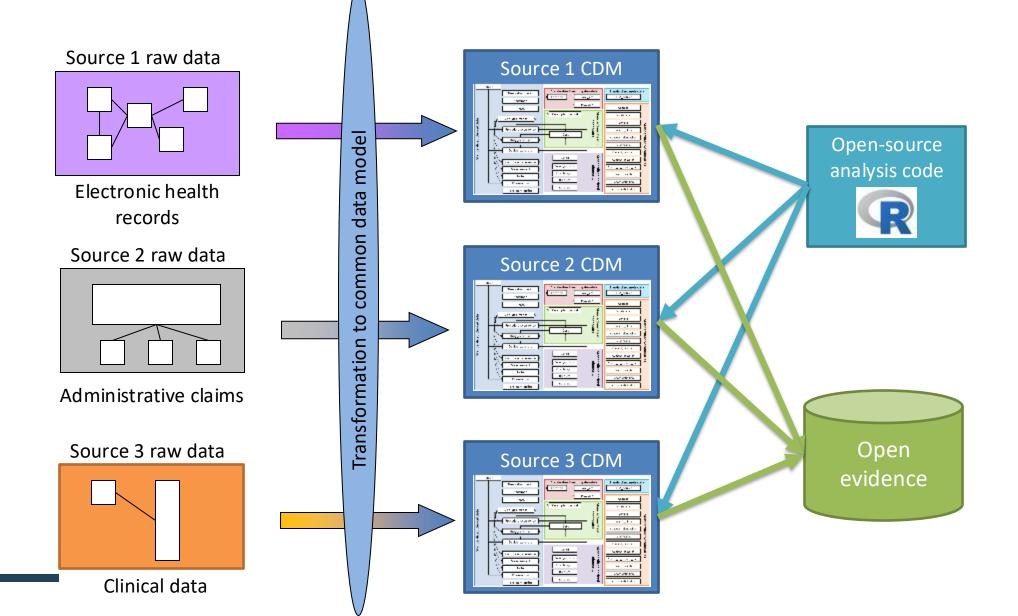
OMOP Common Data Model adoption



OMOP Common Data Model v5.4


OHDSI standardized vocabularies

OHDSI Vocabularies By The Numbers


- 11,561,982 concepts
 3,720,296 standard concepts
 883,766 classification concepts
- 143 vocabularies
- 43 domains

- 86,668,674 concept relationships
 99,192,928 ancestral relationships
- 5,009,796 concept synonyms
- **1** Shared Resource to Enable Data Standards

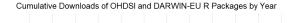
Common data model can enable standardized analytics across a distributed data network

Open-source software development

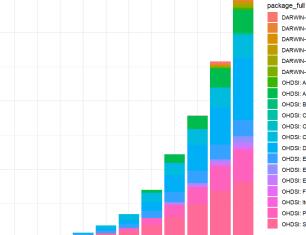
- HADES is an ecosystem of 37 R packages to support standardized analytics for the OMOP CDM and across OHDSI network
- OHDSI CRAN packages have been downloaded >800,000 times

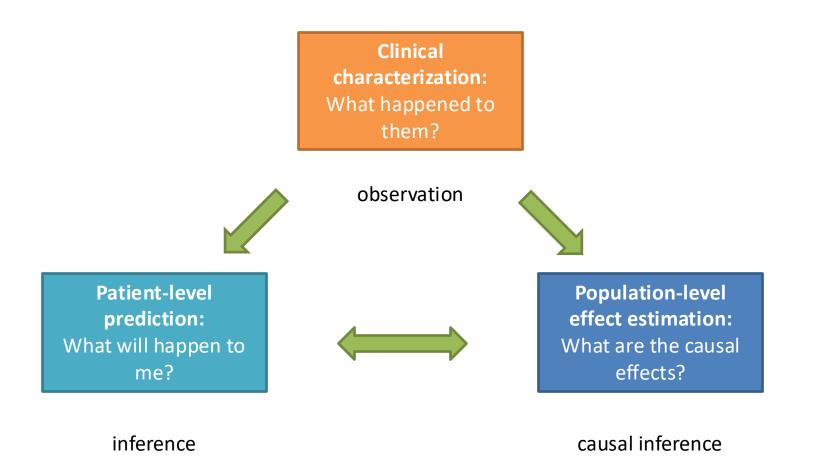
Package	Version	Maintainer(s)	Availability
Achilles	v1.7.2	Frank DeFalco	CRAN
Andromeda	v0.6.7	Martijn Schuemie	CRAN
BigKnn	v1.0.2	Martijn Schuemie	GitHub
BrokenAdaptiveRidge	v1.0.2	Marc Suchard	CRAN
Capr	_	Marci Suchard	GitHub
	v2.0.8		
Characterization	v2.0.1	Jenna Reps	GitHub
CirceR	v1.3.3	Chris Knoll	CRAN
<u>CohortDiagnostics</u>	v3.3.0	Jamie Gilbert	GitHub
CohortExplorer	v0.1.0	Gowtham Rao	CRAN
<u>CohortGenerator</u>	v0.11.2	Anthony Sena	GitHub
CohortIncidence	v4.0.0	Chris Knoll	GitHub
<u>CohortMethod</u>	v5.4.0	Martijn Schuemie	GitHub
Cyclops	v3.4.1	Marc Suchard	CRAN
DatabaseConnector	v6.3.2	Martijn Schuemie	CRAN
DataQualityDashboard	v2.6.1	Katy Sadowksi	GitHub
DeepPatientLevelPrediction	v2.1.0	Egill Fridgeirsson	GitHub
EmpiricalCalibration	v3.1.3	Martijn Schuemie	CRAN
EnsemblePatientLevelPrediction	v1.0.2	Jenna Reps	GitHub
Eunomia	v2.0.0	Frank DeFalco	CRAN
EvidenceSynthesis	v0.5.0	Martijn Schuemie	CRAN
FeatureExtraction	v3.7.1	Ger Inberg	CRAN
Hydra	v0.4.0	Anthony Sena	GitHub
IterativeHardThresholding	v1.0.2	Marc Suchard	CRAN
Keeper	v0.2.0	Anna Ostropolets	GitHub
MethodEvaluation	v0.2.0	Martijn Schuemie	GitHub
	_	-	
OhdsiSharing	v0.2.2	Lee Evans	GitHub
<u>OhdsiShinyModules</u>	v3.0.2	Jenna Reps	GitHub
ParallelLogger	v3.3.1	Martijn Schuemie	CRAN
PatientLevelPrediction	v6.3.9	Egill Friogeirsson & Jenna Reps	GitHub
PhenotypeLibrary	V3 34 0	Gowtham Rao	GitHub
	v3.34.0		
PheValuator	v2.2.11	Joel Swerdel	GitHub
ResultModelManager	v0.5.11	Jamie Gilbert	GitHub
<u>ROhdsiWebApi</u>	v1.3.3	Gowtham Rao	GitHub
SelfControlledCaseSeries	v5.3.0	Martijn Schuemie	GitHub
<u>SelfControlledCohort</u>	v1.6.0	Jamie Gilbert	GitHub
<u>ShinyAppBuilder</u>	v3.1.0	Jenna Reps	GitHub
SqlRender	v1.18.1	Martijn Schuemie	CRAN

750k


500

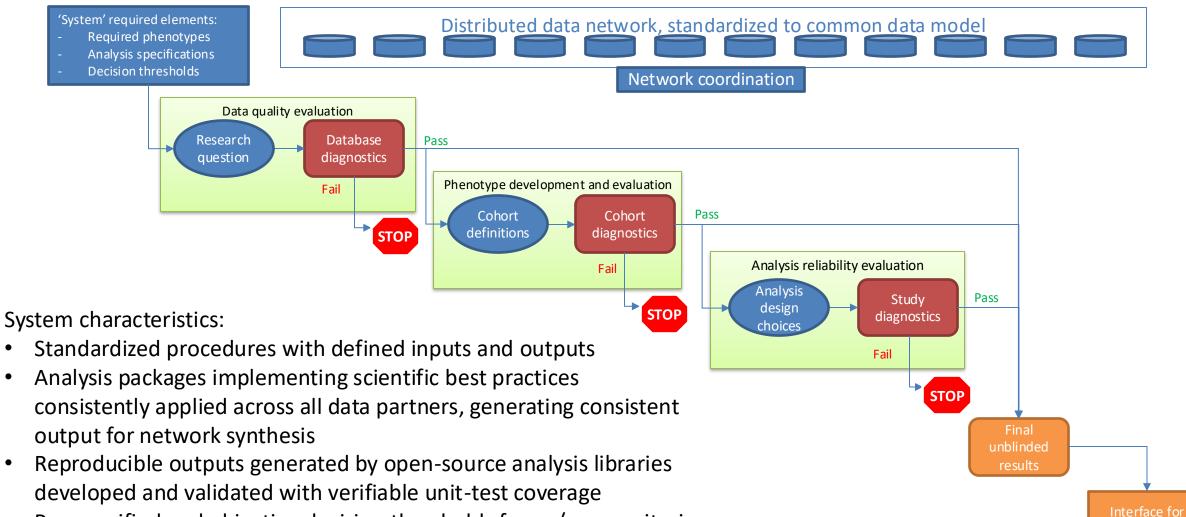
250k





ద[ి] సీ^k స్^k సీ⁶ స్^k సీ⁶ సీ⁶ సీ⁶ స్⁶ స్¹ సీ¹ సీ¹ సీ¹ Year

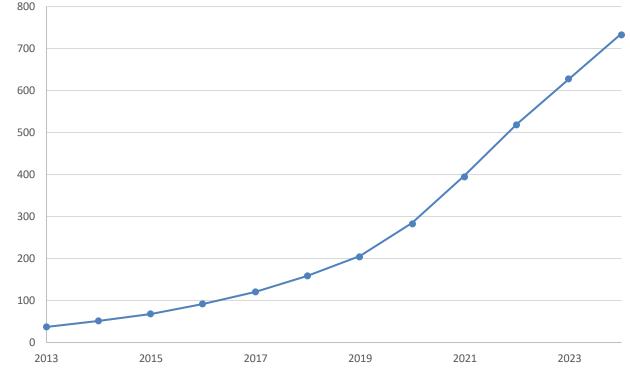
Complementary evidence to inform the patient journey



Standardizing the question makes it possible to standardize the analysis and standardize the evidence

Analytic use case	Туре	Structure						
Clinical characterization	Disease Natural History	Amongst patients who are diagnosed with <insert disease="" interest="" of="">, what are the patient's characteristics from their medical history?</insert>						
	Treatment utilization	Amongst patients who have <insert disease="" interest="" of="">, which treatments were patients exposed to amongst <list disease="" for="" of="" treatments=""> and in which sequence?</list></insert>						
	Outcome incidence	Amongst patients who are new users of <insert drug="" interest="" of=""></insert> among the population with <insert indication="" interest="" of=""></insert> , how many patients experienced <insert interest="" of="" outcome=""></insert> within <time exposure="" following="" horizon="" start=""></time> ?						
Population-level effect estimation	Safety surveillance	Does exposure to <insert drug="" interest="" of=""> increase the risk of experiencing <insert adver<br="" an="">event> within <time exposure="" following="" horizon="" start="">, among the population with <insert indication of interest>?</insert </time></insert></insert>						
	Comparative effectiveness	Does exposure to <insert drug="" interest="" of=""> have a different risk of experiencing <insert (safety="" any="" benefit)="" or="" outcome=""> within <time exposure="" following="" horizon="" start="">, relative to <insert comparator="" treatment="">, among the population with <insert indication="" interest="" of="">?</insert></insert></time></insert></insert>						
Patient level prediction	Disease onset and progression	For a given patient who is diagnosed with <insert disease="" favorite="" your="">, what is the probability that they will go on to have <another complication="" disease="" or="" related=""> within <time diagnosis="" from="" horizon="">?</time></another></insert>						
	Treatment response	For a given patient who is a new user of <insert drug="" interest="" of=""> for <insert indication="" interest="" of="">, what is the probability that they will <insert desired="" effect=""> in <time window="">?</time></insert></insert></insert>						
	Treatment safety	For a given patient who is a new user of <insert drug="" interest="" of=""> for <insert indication="" interest="" of="">, what is the probability that they will experience <insert adverse="" event=""> within <time exposure="" following="" horizon="">?</time></insert></insert></insert>						

Engineering open science systems that build trust into the real-world evidence generation and dissemination process



exploration

- Pre-specified and objective decision thresholds for go/no go criteria
- Measurable operating characteristics of system performance

Academic scholarship and clinical evidence generation

- >730 publications, including in top clinical journals (JAMA, BMJ, Lancet, JAMA Internal Medicine, JACC) and leading methodological journals (JAMIA, JBI, Nature Digital Medicine)
- Clinical evidence generated to inform range of therapeutic areas, including hypertension, diabetes, COVID-19, vision care, depression, oncology

Cumulative Publications from the OHDSI community

Our Journey

Where The OHDSI Community Has Been And Where We Are Going 2024 edition

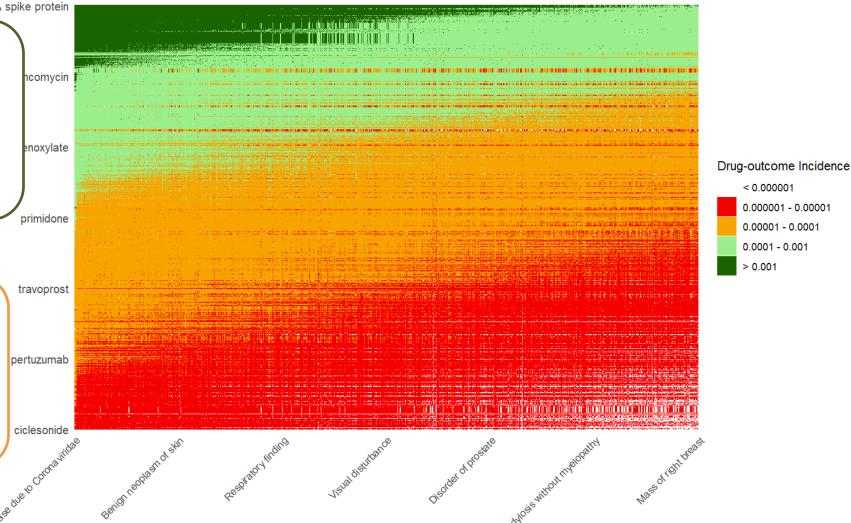
https://www.ohdsi.org/wp-content/uploads/2024/10/OurJourney2024.pdf

Why OHDSI needs Singapore and APAC

THE LEGATUM PROSPERITY INDEX[™] 2023

Advancing the understanding of what drives success in nations

RANK	COUNTRY		0	R		(?)		()	6	٩	6	Ş	@	Ø
ADJUST PILLAR WEIGHTING 👔			x1 🔻	x1 🔻	x1 🔻	x1 🔻	x1 🔻	x1 🔻	x1 🔻					
17	Singapore	+	7	107	18	21	4	11	1	1	14	1	1	87
16	Japan	+	5	27	17	141	5	5	8	28	17	2	13	15
29	💓 South Korea	+	37	42	30	107	25	37	21	9	26	3	3	63
20	Taiwan, China	+	4	26	20	44	23	7	34	12	31	4	16	73
54	China China	+	86	162	74	31	64	38	43	24	46	5	56	139
33	💿 Israel	+	124	49	22	83	15	17	33	19	12	6	26	96
3	Head Norway	+	3	1	2	3	9	14	20	5	4	7	10	9
8	Head Iceland	+	8	7	10	5	19	20	19	21	10	8	11	13
2	Sweden	+	10	4	7	4	6	15	7	8	3	9	8	1
5	+ Switzerland	+	2	12	4	12	12	1	11	2	5	10	4	6
6		+	9	5	5	8	3	9	3	10	1	11	6	39
7	Luxembourg	+	1	6	8	18	20	4	6	6	6	12	36	10
9	Germany	+	19	9	9	20	21	6	5	11	8	13	19	12
22	🖈 Hong Kong	+	16	98	28	68	1	2	2	3	27	14	9	30


Why Singapore needs OHDSI

Drug Outcome Incidence in a large US claims database

SARS-CoV-2 (COVID-19) vaccine, mRNA spike protein

If health data for the entire Singapore population of 5.9 million were accessible, then ~5% of questions on drug-outcome pairs may have sufficient statistical power to answer alone if the incidence are comparable to US population....

...but even with a national database, >70% of drug-outcome questions are likely to have insufficient data for prediction or estimation, so an international network study would be required to generate reliable answers

Concluding thoughts

- Enabling use and establishing value of real-world evidence is a reasonable vision, which requires building trust across evidence generators and consumers
- People and processes need to be augmented with science, technology and engineering
- Community efforts today can enable a more proactive future tomorrow
 - Data network standardization and quality assessment
 - Standardized analytic tool development
 - Methodological benchmarks and objective diagnostics
 - Phenotype development and evaluation
- Open science systems that promote transparency and reproducibility can increase reliability and efficiency
- We need an international community working together in order to meet national, regional and global public health needs