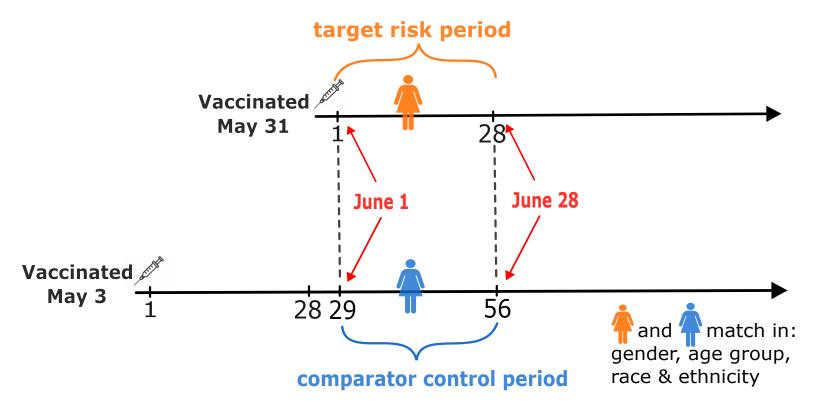


Real-world performance of the concurrent comparator

Shounak Chattopadhyay On behalf of the FDA-BEST collaboration Oct 8, 2024

Background

- Earlier work* carried out large-scale comparative evaluation of existing state-of-the-art methods for vaccine safety surveillance.
- These methods may produce biased estimates based on differences in patient preference, regarding (1) whether they receive the vaccine and/or (2) when they receive the vaccine.
- Klein et al. (2021)** proposed a new method called concurrent comparator, which aims to control for this bias.
- Q: How does the concurrent comparator perform based on realworld observational health data?


*Schuemie MJ, Arshad F, Pratt N, *et al.* Vaccine safety surveillance using routinely collected healthcare Data—An empirical evaluation of epidemiological designs. *Frontiers in Pharmacology*. 2022;13.

**Klein NP, Lewis N, Goddard K, *et al.* Surveillance for adverse events after COVID-19 mRNA vaccination. *JAMA: The Journal of the American Medical Association*. 2021;326:1390–9.

Concurrent comparator

- The concurrent comparator predefines a risk interval and matches each vaccinated patient for whom an outcome is observed during their target risk period, with a vaccinated patient in their comparator control period on the same calendar day.
- This matching is done based on gender, age group, race, and ethnicity.

 Estimation of risk ratio is carried out using a conditional Poisson regression.

Objectives of the study

- **Goal:** compare performance characteristics of the concurrent comparator with existing methods in the context of vaccine safety based on realworld observational data.
- Comparison is based on the metrics and methods on right.

Statistical metrics and detection rule:

- Type 1 error (across time)
- Power of detection (across time)
- Proportion of non-finite estimates
- We use the MaxSPRT rule to detect a safety signal.

Methods considered:

- Concurrent comparator
- Self-control case series (SCCS)
- Historical comparator
- Case-control

Open-source software

- For implementation of the concurrent comparator approach, our team has created an R package called ConcurrentComparator.
- The package can be downloaded on GitHub, from: https://github.com/OHDSI/Con currentComparator.
- The package is open-source, publicly available to download, and has been extensively tested.

OHDSI / ConcurrentComparator		Q Type [] to searc	h
Code ① Issues 값 Pull requests (🕑 Actions 🛛 🗄 Projects	🕐 Security	Insights
			💿 Watch 10 👻
양 main → १ 2 Branches ा 0 Tags	Q Go to file	t +	<> Code -
() msuchard add TODO deprecated notes		9c87cfe · 5 months ago	🕑 21 Commits
R R	add TODO deprecated not	es	5 months ago
🖿 extras	update test target cohorts		5 months ago
inst/sql/sql_server	first single analysis versior	1	6 months ago
man-roxygen	initial function API		9 months ago
🖿 man	first multi-analysis run		5 months ago
Vignettes	add TODO deprecated not	es	5 months ago
🗋 .Rbuildignore	intermediate commit to de	bug against db	8 months ago
🗋 .gitignore	intermediate commit to de	bug against db	8 months ago
ConcurrentComparator.Rproj	initial function API		9 months ago
	more dependencies		5 months ago
	first multi-analysis run		5 months ago
🗅 README.md	initial package import		9 months ago

Real-world evidence with 118M estimates

Exposures of interest:

- H1N1pdm (`09-`10)
- Seasonal influenza (Fluvirin, `17-`18)
- Seasonal influenza (Fluzone, `17-`18)
- Seasonal influenza (all, `17-`18)
- Zoster (2018, 2 doses)
- HPV (2018, 2 doses)
- Covid-19 (BNT126b2, `20-`21)
- Covid-19 (mRNA-1273, `20-`21)

Data sources:

- CCAE
- MDCR
- MDCD
- Optum EHR
- Optum DOD

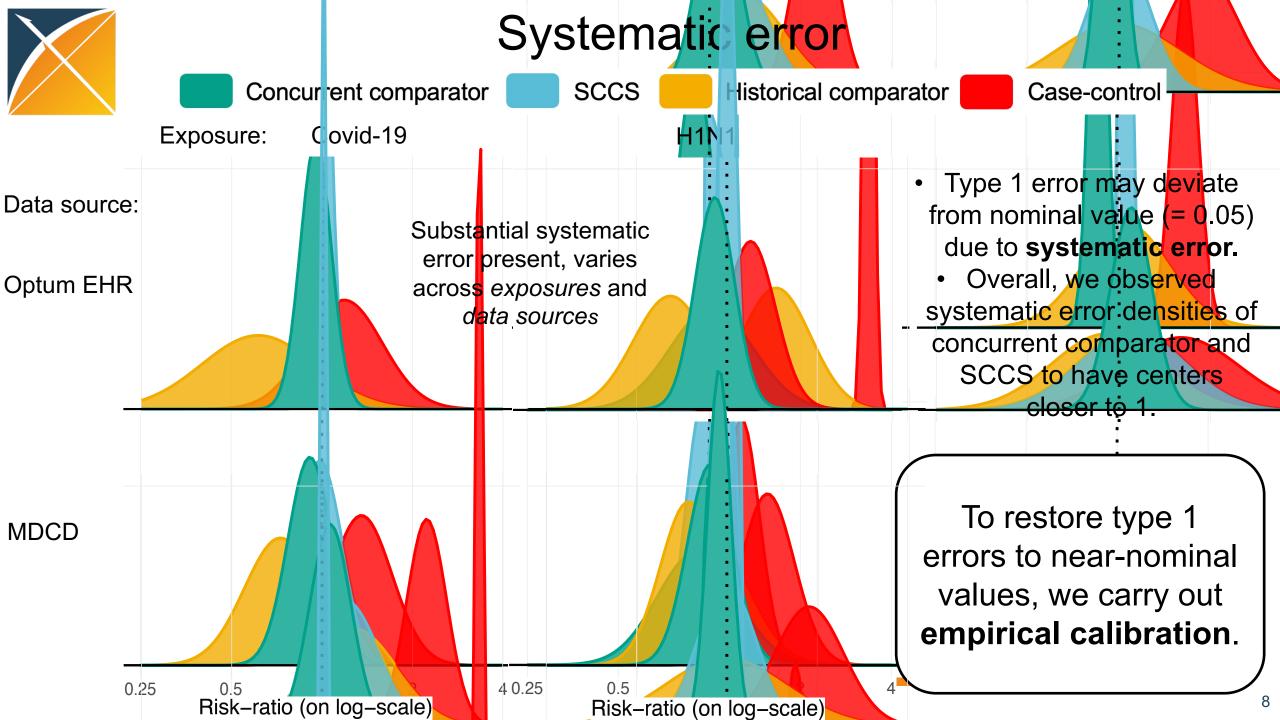
Negative control outcomes (93):

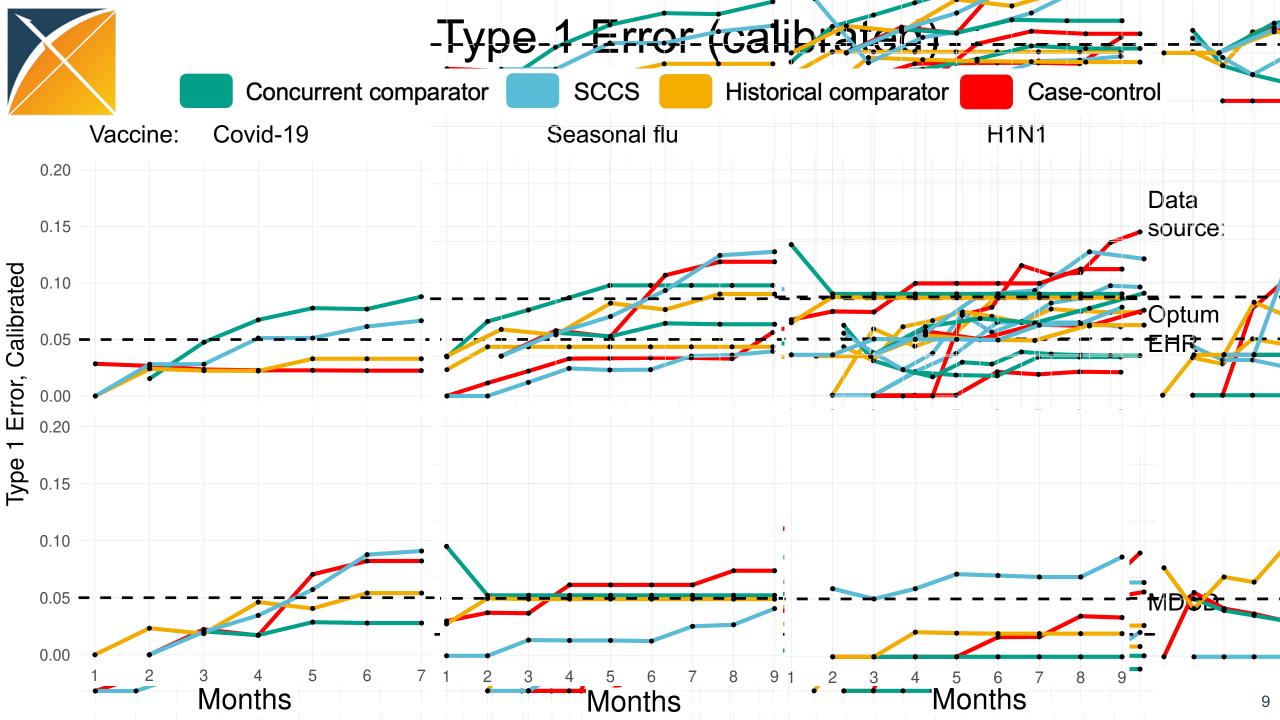
- Not related to any of these vaccines
- Similar prevalence and %inpatient diagnoses (severity) to adverse events
- Clinical expert review

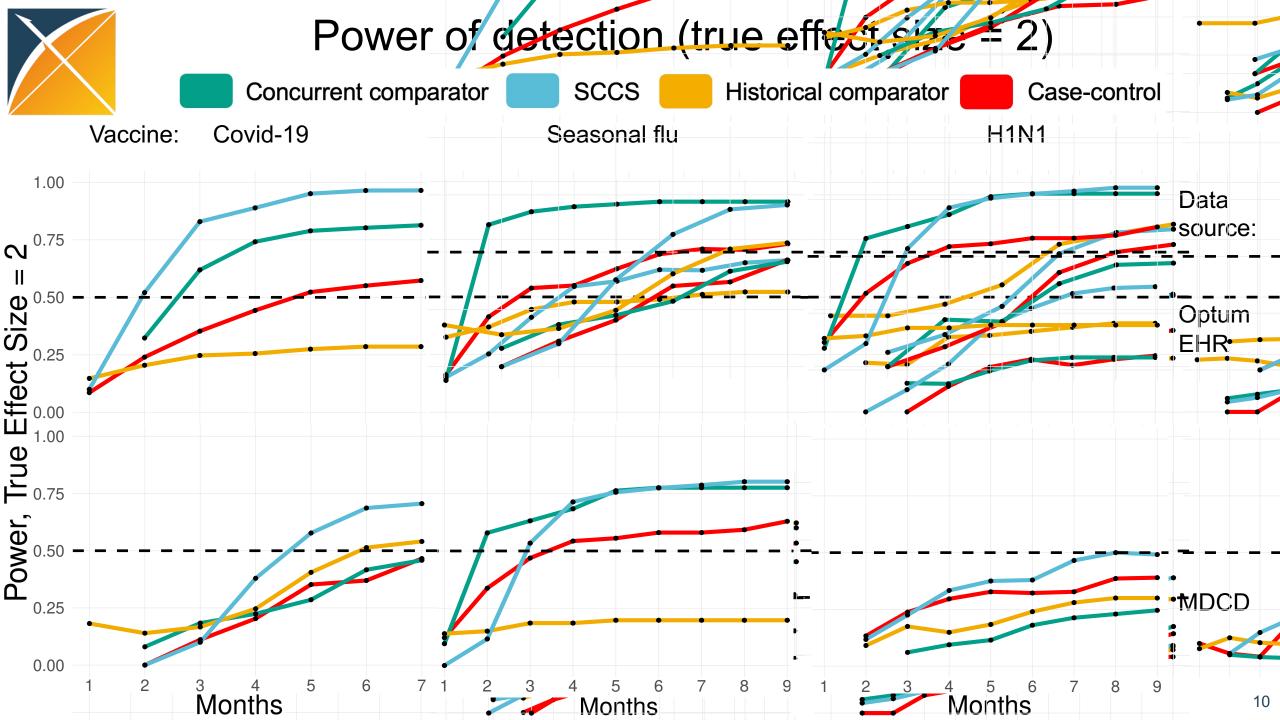
Positive control outcomes:

- Imputed from negative controls
- Known effect sizes (1.5, 2, 4 x)

Study protocol link: https://ohdsi-studies.github.io/Eumaeus/Protocol.html




Method details & variants for demonstration


- Time-at-risk (TaR) taken to be 1-28 days after exposure to vaccine.
- Concurrent comparator
- Self-control case series (SCCS)
 - How often did/do events occur in the same patients at different times?
 - Adjust by age and season, excluding pre-vaccination window.
- Historical rates (Historical comparator)
 - How often did events occur to other patients in the past?
 - Adjust by age and sex, using TaR after historic visit.

Case-control

- How often are patients with events vaccinated?
- Adjust using age and sex matched controls.

Proportion of non-finite estimates

- We also evaluate the methods based on the proportion of non-finite effect size estimates.
- No estimate may be returned if there were no subjects left after propensity score matching.
- Another reason could be that there were no subjects having the outcome.
- Concurrent comparator has a higher proportion than the other methods.

Method	% Non-finite
Case-control	16.95 %
Concurrent comparator	36.56%
Historical comparator	26.88%
SCCS	1.49%

Method	% Non-finite
Case-control	4.84 %
Concurrent comparator	34.41%
Historical comparator	33.33%
SCCS	0.00%

Exposure: H1N1pdm vaccine, Data source: Optum EHR

Exposure: H1N1pdm vaccine, Data source: MDCD

Conclusion

- We compare the concurrent comparator approach with existing methods used in vaccine safety surveillance.
- Our analysis is based on an extensive set of negative controls and imputed positive controls across multiple data sources and vaccines.
- After empirical calibration to restore nominal type 1 error, SCCS performs the best overall, with concurrent comparator close to SCCS in terms of power of detection.
- The relative performance of the concurrent comparator decreases for smaller data sources.
- Compared with other approaches, concurrent comparator produces non-finite estimates more frequently.