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Background

Real-world evidence synthesis in healthcare often spans multiple sites characterized by data heterogeneity
and distribution shifts. This complexity necessitates sophisticated methods to harness data across diverse
sources effectively. Deep learning models have shown promise in addressing various healthcare tasks; how-
ever, the direct aggregation of individual-level patient data from different sites to train a unified model is
often impractical due to stringent data privacy regulations and logistical challenges.

Traditional approaches like federated learning [1] offer a promising solution by enabling model training
on decentralized data while preserving data privacy. However, conventional federated learning typically
involves iterative rounds of exchanging gradients between local sites and a central server, which can be
computationally expensive and impractical for healthcare institutions with limited resources and strict oper-
ational constraints.

An emerging method known as model merging [2, 3, 4] presents a novel approach to overcome these
challenges. Unlike conventional federated learning, model merging does not require multiple rounds of
gradient updates, while also not require the sites to share their data. Instead, this approach focuses on
combining multiple models finetuned on local data into a unified model within the parameter space. By
merging models in the parameter space, rather than combining data or gradients, this method preserves data
privacy while still allowing communication-efficiency in collaborations across distributed sites.

In this context, our study explores a novel distributed algorithm, which is does not require the data to
be share, and only uses two rounds of communications. The only things that are shared are the parameter
residuals between the pretrained model parameters and finetuned model parameters, and the coefficients for
the fitted quadratic surrogate functions.

Unlike traditional federated learning methods which produces a single final model, our method finds the
Pareto set of solutions. The Pareto set of solutions allows the practitioners to visualize the trade-offs within
the synthesis, thus allowing them to make more informed decisions. In addition, the Pareto front solutions
can enhance fairness by maximizing the worst performing site. Our approach aims to optimize the synthesis
of real-world evidence across healthcare networks, offering a scalable and privacy-preserving solution to
leverage collective knowledge while respecting data constraints and regulatory requirements.
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Methods

Model merging

A recent work by [2] introduced task arithmetic as a simple and effective way for performing model merging.
The task vector for task n is defined as vn = θnft − θpre, which is the element-wise difference between the
pre-trained parameters and the fine-tuned parameters for the task n. To perform the model merging with task
vectors, we can compute θpre+

∑N
n=1 cnvn, where cn is some scaling factors and has shown to be essential

to the performance of the merged model [5, 4].
Denoting the metric of task n as Mn, most of the existing approaches for model merging aim to im-

prove an equal weight average metric 1
N

∑N
n=1Mn. This target implies the user of the algorithm has equal

preferences between tasks. However, in real-world applications, users might have biased preferences for the
importance of tasks, necessitating trade-offs. In such cases, the goal of model merging is no longer the equal
weight average metric. Instead, a Pareto set of solution is preferable.

Pareto fronts

Pareto dominance Let X be a set representing the solution space, where each element x ∈ X is a possible
solution to the multi-objective optimization problem. Let there be n objectives. Define an evaluation func-
tion fi : X → R, where i ∈ {1, 2, · · · , n}. Given two solutions x, y ∈ X , we define that x Pareto dominates
y, denoted by x ≻P y, if and only if: ∀i ∈ {1, 2, . . . , n}, fi(x) ≤ fi(y) and ∃j ∈ {1, 2, . . . , n}, fj(x) <
fj(y).

Pareto optimal solutions The Pareto front is the set of solutions in the solution space X that are not
Pareto dominated by any other solutions in X . PF = {x ∈ X |̸ ∃y ∈ Xs.t.y ≻P x}

Quadratic approximation

In many cases, approximating the Pareto front can be computationally expensive and data inefficient. We
introduce our method, MAP [6], a computationally efficient method to find the Pareto front for model
merging.

Given the task vectors {vn}n∈[N ] and the initialization θpre ∈ Rd, we denote the merged model param-
eters as θmerge(c) = θpre +Vc = θpre +

∑N
n=1 cnvn, where V = concat(v1, ...,vN ) ∈ Rd×N is the task

matrix and c = concat(c1, ..., cN ) ∈ RN is the scaling coefficients for the task vectors.
The main idea is to use the second-order Taylor expansion to approximate Mn:

Mn(c) ≡ Mn(θmerge(c)) = Mn(θpre) +∇Mn(θpre)
⊤(θmerge(c)− θpre)

+
1

2
(θmerge(c)− θpre)

⊤Hn(θpre)(θmerge(c)− θpre) +Rn(θmerge(c)− θpre)

≈ Mn(θpre) +∇Mn(θpre)
⊤Vc+

1

2
(Vc)⊤Ht(θpre)Vc

where Hn(θpre) = ∇2Mn(θpre) ∈ Rd×d is the Hessian matrix and Rn(θmerge(c)− θpre) = Rn(Vc) is the
third-order remainder, which is negligible when ||Vc||3 = ||θmerge(c) − θpre||3 is small. Leveraging this
quadratic approximation, we can define surrogate models for each task n, M̃n(c;An,bn, en) ≡ en+b⊤

n c+
1
2c

⊤Anc where

An = V⊤Hn(θpre)V ∈ RT×T ,bn = V⊤∇Mn(θpre) ∈ RT , en = Mn(θpre) +Rn (1)
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We can further leverage existing methods to learn the coefficients by minimizing the empirical risk over
multiple c: for instance,

A∗
n,b

∗
n, e

∗
n = arg min

An,bn,en

∑
c∈Ω

|Mn(θmerge(c))− M̃n(c;An,bn, en)|2 (2)

where Ω = {c(1), ..., c(Nc)} is the set of c and Mn(θmerge(c)) is the corresponding evaluation metric.
Here we formulate MAP as a federated learning algorithm which only requires two rounds of communi-

cations:

Algorithm 1 MAP
1: Input: pretrained model with weights θpre, K site each with data Dk

2: Output: a pareto front of different scaling coefficients that can be used to combine the models.
3: Prepare models {θnft} and compute task vectors {vn = θnft − θpre}.
4: for k = 1 . . .K do
5: Site k to finetune the pretrained model θpre on their local data Dk and obtain θkft
6: Site k to upload the task vector {vk = θkft − θpre} to the server
7: Site k to download the other K − 1 task vectors from the server
8: end for
9: The lead site to share pre-sampled M scaling coefficients C = [c1, . . . , cM ]T to the K sites

10: for k = 1 . . .K do
11: for m = 1 . . .M do
12: Site k to compute the combined model θm = θpre +

∑
k cmkθ

k
ft

13: Site k to evaluate the combined model θm on their private data Dk and obtain M̃k.
14: Site k to fit a quadratic function on M̃k by learning A∗

n,b
∗
n, e

∗
n in (2) and share back A∗

n,b
∗
n, e

∗
n.

15: end for
16: end for
17: Fit the quadratic approximation surrogate model M̃n.
18: Apply MOOP algorithm (e.g. NSGA-III) to {M̃n} and get the Pareto front
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Results

Performance of the quadratic approximation

(a) (b)

Figure 1: (a) An example of uncertainty in 2D polar coordinate system. The more uncertain within a bin, the
more (c, {Mn(θmerge(c))}Nn=1) pairs information we should collect in the next round. (b) An illustration of
discretization of a 3D spherical coordinate system. When the dimension is higher, the discretization would
be in a hyper-spherical coordinate system along with the angular dimensions.

Zero-shot Medical Image Classification

We used the NIH dataset consisting of over 112,000 chest X-rays and 30,000 unique patients [7]. It orig-
inally contained 15 classes (14 diseases and 1 class for no finding). We split the dataset into two groups,
where medical task 1 specifically tries to classify Atelectasis, Consolidation, Infiltration, Pneumothorax, and
medical task 2 tries to classify Nodule, Mass and Hernia. An example image taken from the dataset is shown
in Figure 2 (a).
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(a) (b)

Figure 2: (a) Example figure from the NIH [7] dataset. (b) Pareto fronts found by brute-force direct search
using 400 points and by MAP using 30 points. We randomly sampled 25 points from the predicted Pareto
front by MAP and evaluated its performance.

Our next step is to apply MAP to electronic health records data using the 17 benchmark tasks established
in OHDSI PatientLevelPrediction package.

Conclusion

Evidence synthesis plays a central role in distributed research networks such as OHDSI. Communication-
efficient and privacy-preserving distributed learning algorithms have been developed for regression-based
machine learning methods [8]. This work introduces an innovative approach for deep learning-based mod-
els. Our research aligns with the mission of OHDSI by advancing the frontier of methodology in clinical
evidence generation and evidence synthesis.
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