Comparison of deep learning and conventional methods for disease onset prediction
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Background: Identifying individuals at high risk of disease at an early stage allows for improved care and

risk-factor targeted intervention. Conventional a

oproaches such as logistic regression and gradient

boosting (XGBoost) have long served as reliable tools for predictive modeling in the clinical domain.
However, the continuous advancement of deep learning methods, such as ResNet and Transformer, offers
the promise of improved prediction accuracy and the ability to extract intricate patterns from complex

clinical data. This study compares these conventional and deep learning met
persons aged 55 — 84, bipolar disorder in patients newly diagnosed with maj

nods to predict dementia in
or depressive disorder, and

lung cancer in patients aged 45 — 65. We use observational data from administrative claims and electronic
health records mapped to the OMOP CDM and follow the standardized OHDSI patient-level prediction
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approach for onset prediction in Figure 1.

Figure 1. Onset prediction approach.
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Methods: A study overview is presented in Figure 2. We evaluate internal and external validation

performance using AUROC for discrimination and E

avg

for calibration. Friedman's test is used to detect

ranking differences of the different prediction methods. If the null hypothesis for no difference in ranks
between the methods is rejected, we proceed with a post-hoc test to examine all pairwise differences,
controlling for multiplicity. The results are plotted in a critical difference (CD) diagram of the Nemenyi test,
which shows the mean ranks of each prediction method.
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Prediction problem

Definition of target-outcome
pairs for onset prediction.

T | Target cohort
O| Outcome cohort

Prediction problems

 Dementia in persons
aged 55 - 84

* Bipolar disorder in persons
newly diagnosed with
major depressive disorder

« Lung cancer in persons
aged 45 - 65

Database extraction

Extract target and outcome
cohort from database. Label
intersection of cohorts as
persons with the outcome in
the target.

Databases

 |[PCI

« AUSOM

* Optum EHR

» Clinformatics

« STARR-OMOP
« CUIMC
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Step 3
Model development

Partition data into training

and test set. Develop models

for various prediction
methods on training set.

Prediction methods

* Logistic regression
« XGBoost

* Residual network
* Transformer

Figure 2. Study overview.
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Test set

Step 4
Internal validation

Evaluate discrimination and
calibration performance of
models on test set.

Evaluation metrics

* Discrimination: Area under
the receiver operating
characteristic curve

« Calibration: Average
absolute difference
between observed and
predicted probabilities
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Step 5
External validation

Evaluate discrimination and
calibration performance of
models on external data
sources.

Databases
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Figure 3. Internal and external discrimination performance (AUROC) across prediction methods and prediction problems.

Discussion: Discrimination performance across databases, prediction methods, and prediction problems is
presented in Figure 3. Using these measures, the CD diagram in Figure 4A reveals that conventional
methods outperform deep learning methods. However, assessing only internal validation performance, no
significant difference between methods is found and no post-hoc test is performed. This is confirmed by
learning curve analysis in Figure 5, which shows that performance of conventional and deep learning
methods converges if enough data is available. Conventional models transport better (Figure 4B) and rank
better on small data (Figure 4C). Small data also causes poor calibration in ResNet.

Our finding highlights the current limitations of deep learning methods when applied to observational
nealthcare data. These methods are more complex and require more data to train, but do not show better
oerformance than conventional methods. However, the type of data we use, flattened tabular data, likely
does not exploit the full capabilities of deep learning methods. Future work should focus on techniques
that utilize the temporal nature of observational data to fully take advantage of the complex nature and
pattern recognition capabilities of deep learning.
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Figure 5. AUROC performance on the test set for
increasingly larger subsets of the training set

Figure 4. Ranking of prediction method based on AUROC
for (A) internal and external validation, (B) external
validation, (C) models developed on small data.



