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Background 

Substantial background incidence rate (IR) heterogeneity has been reported across age, sex, and 

database for CCOVID19 vaccine adverse events of special interest (AESI)[1]. It is unclear what proportion 

of the observed IR heterogeneity is attributable AESI phenotype error (outcome misclassification e.g., 

low sensitivity). We assessed if adjusting AESI IRs for phenotype error reduced heterogeneity. We 

evaluated the impact of phenotype error adjustment on background IRs of 4 AESIs in 5 databases, 

stratified by age and by sex. 

Methods 

We used 5 US observational databases transformed to the OMOP CDM (4 administrative claims and 1 

electronic health record) covering 3 years before the COVID19 pandemic (2017-01-01 to 2019-12-31).  

We calculated background IRs as the number of outcome events divided by person time at-risk (TAR) per 

100,000 person-years (100k PYs) in a target population stratified by age and by sex. The target 

population was persons with an observation period on 2017-01-01, 2018-01-01, or 2019-01-01 with 

≥365 days of prior database observation. TAR for outcome events was 1 day after until 365 days after the 

target cohort entry date or end of database observation. 

We assessed 4 AESI outcomes from a previous OHDSI network study[1]: Inpatient acute myocardial 

infarction (AMI), deep vein thrombosis (DVT), pulmonary embolism (PE), and inpatient ischemic stroke 

(IS). Following an event, a patient could re-enter the at-risk cohort following a 365-day clean window 

during which they did not contribute TAR. 

We calculated outcome phenotype error metrics sensitivity (SN) and specificity (SP) in internal validation 

studies using a probabilistic reference standard[2, 3] where the reference standard is the probability of 

case status derived from a diagnostic predictive model. We stratified database-specific phenotype errors 

by age and by sex to make corresponding age and sex stratified IR adjustments. 

We adjusted the IR numerator based on quantitative bias analysis principles[4, 5] using SN and SP point 

estimates: outcomesadjusted = (outcomes - (1 - SP)×persons at-risk) / (SN - (1 - SP)). We reported patterns of 

IR adjustment as the number of databases for which the IR increased for AMI, DVT, PE, and IS. 



2 
 

We then computed pooled observed and pooled adjusted AESI IRs across databases with random-effects 

meta-analysis[6, 7]. We reported the pooled IR prediction interval (PI)[8, 9] before and after adjustment 

to quantify heterogeneity change. The pooled IR PI represents the expected range of true new estimates 

in subsequent similar studies. We also reported the τ2 statistic as another measure of meta-analytic 

heterogeneity to compare unadjusted and adjusted pooled results. 

We evaluated pooled IR adjustment with the expected absolute measurement error (EAME) metric, 

which is the log relative pooled IR change after adjustment compared to before and is defined as: 

EAME=abs(log(IRadjusted/IR)). Lower values indicate lesser impact and higher values indicate greater 

adjustment impact. 

We reported meta-analytic results for AMI and DVT among persons 55-64 years and among males 0-85+ 

years. We will report meta-analytic results for PE and IS in subsequent reports. 

Results 

For AMI among males 0-85+ years, sensitivity ranged from 0.582 to 0.667 and specificity ranged from 

0.997 to 1.000 across databases. Among persons 55-64 years, AMI sensitivity ranged from 0.557 to 0.651 

and specificity ranged from 0.997 to 0.999. For DVT among males 0-85+ years, sensitivity ranged from 

0.728 to 0.889 and specificity ranged from 0.995 to 0.999 across databases. Among persons aged 55-64 

years, DVT sensitivity ranged from 0.774 to 0.884 and specificity ranged from 0.995 to 0.998 (Table 1). 

Table 1. AMI and DVT phenotype errors by database for [Male 0-85+] and [Male/Female 55-64] strata 

Outcome Stratum Database Sensitivity Specificity 

AMI 

Male 0 - 85+ Clinformatics® 0.598 0.999 

Male 0 - 85+ CCAE 0.650 1.000 

Male 0 - 85+ MDCD 0.582 0.999 

Male 0 - 85+ MDCR 0.667 0.997 
Male 0 - 85+ Optum® EHR 0.621 0.999 

Male/Female 55 - 64 Clinformatics® 0.557 0.999 

Male/Female 55 - 64 CCAE 0.651 0.999 

Male/Female 55 - 64 MDCD 0.594 0.997 

Male/Female 55 - 64 MDCR 0.603 0.998 

Male/Female 55 - 64 Optum® EHR 0.615 0.999 

DVT 

Male 0 - 85+ Clinformatics® 0.815 0.998 
Male 0 - 85+ CCAE 0.889 0.999 

Male 0 - 85+ MDCD 0.728 0.999 

Male 0 - 85+ MDCR 0.830 0.995 

Male 0 - 85+ Optum® EHR 0.843 0.998 

Male/Female 55 - 64 Clinformatics® 0.806 0.998 

Male/Female 55 - 64 CCAE 0.884 0.998 

Male/Female 55 - 64 MDCD 0.774 0.997 
Male/Female 55 - 64 MDCR 0.832 0.995 

Male/Female 55 - 64 Optum® EHR 0.852 0.998 

Key – Clinformatics®: Optum’s de-identified Clinformatics® Data Mart Database, CCAE: Merative™ MarketScan® Commercial 
Database, MDCD: Merative™ Multi-State Medicaid Database,  MDCR: Merative™ Medicare Database, Optum® EHR: Optum® de-
identified Electronic Health Record Dataset 
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Table 2 shows that phenotype error adjustment directionally increased AMI IRs in all strata except 

persons 85+ years of age. Similarly, IS IRs directionally increased for all strata after adjustment. 

Conversely, the direction of IR adjustment was mixed across databases for DVT and PE where in no strata 

for either condition did all adjustments increase or decrease the IR. No statistical test informed IR 

increase or decrease. 

Table 2: Incidence adjustment patterns 

  AMI DVT PE IS 

Stratum n IR↑ IR↓ n IR↑ IR↓ n IR↑ IR↓ n IR↑ IR↓ 

Male/Female 0-85+ 5 5 0 5 2 3 5 3 2 5 5 0 
Male/Female 18-35 4 4 0 4 3 2 4 3 1 4 4 0 

Male/Female 35-54 5 5 0 5 3 2 5 2 3 5 5 0 

Male/Female 55-64 5 5 0 5 2 3 5 2 3 5 5 0 

Male/Female 65-74 4 0 0 5 4 1 5 3 2 4 4 0 

Male/Female 75-84 4 4 0 4 2 2 4 1 3 4 4 0 

Male/Female 85+ 4 2 2 4 2 2 3 1 2 4 4 0 

Male 0-85+ 5 5 0 5 2 3 5 3 2 5 5 0 
Female 0-85+ 5 5 0 5 2 3 5 3 2 5 5 0 

Key – n: databases in which incidence adjustment was conducted, IR↑: incidence rate increased, IR↓: incidence rate decreased 
AMI: inpatient acute myocardial infarction, DVT: deep vein thrombosis, IS: inpatient ischemic stroke, n: number of databases 
with adjusted IR, IR↑: number of databases where incidence rate increased after phenotype error adjustment, IR↓: number of 
databases where incidence rate decreased after phenotype error adjustment 
 

Figure 1 and Figure 2 depict the impact of AMI IR adjustment for persons 55-64 years and males 0-85+ 

years, respectively. The plot component in Figure 1 and Figure 2 displays the impact patterns for the 

corresponding AMI strata in Table 2. Further, the figures report the unadjusted and adjusted pooled IRs 

and associated meta-analysis metrics for heterogeneity assessment. The plot and table values are 

reported on the natural logarithm scale to ease interpretation. 

Among persons 55-64 years (Figure 1), the unadjusted AMI pooled IR was 664 events/100k PYs (95% PI: 

100, 4397) with PI width=4297 and τ2=0.294. The adjusted AMI pooled IR was 975 events/100k PYs (95% 

PI: 123, 7759) with PI width=7636 and τ2=0.354.  EAME was 0.35 in this stratum. Among males 0-85+ 

years (Figure 2), the unadjusted AMI pooled IR was 466 events/100k PYs (95% PI: 40, 5485) with PI 

width=5446 and τ2=0.50.  The adjusted AMI pooled IR was 656 events/100k PYs (95% PI: 51, 8470) with 

PI width=8419 and Tau2=0.54. EAME was 0.13 in this stratum. 

Figure 3 and Figure 4 depict the impact of DVT adjustment for persons 55-64 years and males 0-85+ 

years, respectively. The plot component in Figure 3 and Figure 4 displays the impact patterns for the 

corresponding DVT strata in Table 2. Also, unadjusted and adjusted pooled IRs and associated meta-

analysis metrics are reported for heterogeneity assessment. The plot and table values are again reported 

on the natural logarithm scale. 

Among persons 55-64 years (Figure 3), the unadjusted  DVT pooled IR was 774 events/100k PYs (95% PI: 

220, 2718) with PI width=2498 and τ2=0.13. The adjusted DVT pooled IR was 779 events/100k PYs (95% 

PI: 156, 3894) with PI width=3738 and τ2=0.21. Among males 0-85+ years (Figure 4), the unadjusted DVT 

pooled IR was 457 events/100k PYs (95% PI: 65, 3224) with PI width=3159 and τ2 0.31. The adjusted DVT 

pooled IR was 461 events/100k PYs (95% PI: 56, 3805) with PI width=3749 and τ2=0.37. EAME was 0.004 

in this stratum. Meta-analysis results for other outcomes in other strata were qualitatively similar.
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Figure 1: Acute myocardial infarction incidence adjustment and meta-analysis among persons 55-64 years. Incidence is on the loge scale.  

 
Key – optum_extended_dod: Optum’s de-identified Clinformatics® Data Mart Database, truven_ccae: Merative™ MarketScan® Commercial Database, truven_mdcd: Merative™ Multi-State Medicaid 
Database, truven_mdcr: Merative™ Medicare Database, optum_ehr: Optum® de-identified Electronic Health Record Dataset   
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Figure 2: Acute myocardial infarction incidence adjustment and meta-analysis among males 0-85+ years. Incidence on loge scale. 

 
Key – optum_extended_dod: Optum’s de-identified Clinformatics® Data Mart Database, truven_ccae: Merative™ MarketScan® Commercial Database, truven_mdcd: Merative™ Multi-State Medicaid 
Database, truven_mdcr: Merative™ Medicare Database, optum_ehr: Optum® de-identified Electronic Health Record Dataset 
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Figure 3. Deep vein thrombosis incidence adjustment and meta-analysis among persons 55-64 years. Incidence on loge scale. 

 
Key – optum_extended_dod: Optum’s de-identified Clinformatics® Data Mart Database, truven_ccae: Merative™ MarketScan® Commercial Database, truven_mdcd: Merative™ Multi-State Medicaid 

Database, truven_mdcr: Merative™ Medicare Database, optum_ehr: Optum® de-identified Electronic Health Record Dataset   
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Figure 4. Deep vein thrombosis incidence adjustment and meta-analysis among males 0-85+ years. Incidence on loge scale. 

 
Key – optum_extended_dod: Optum’s de-identified Clinformatics® Data Mart Database, truven_ccae: Merative™ MarketScan® Commercial Database, truven_mdcd: Merative™ Multi-State Medicaid 
Database, truven_mdcr: Merative™ Medicare Database, optum_ehr: Optum® de-identified Electronic Health Record Dataset
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Conclusion  
Contrary to a qualitative hypothesis, adjusting two COVID19 AESI IRs for phenotype error did not reduce 

IR heterogeneity across 5 data sources. However, it is unclear how much phenotype error adjustment is 

expected given there is little phenotype error heterogeneity across these few US data sources. 

Adjustment predominantly increased IRs for AMI and IS, although IR adjustment direction was mixed for 

DVT and PE.  

For AMI and IS, sensitivity was low among persons 55-64 and among males 0-85+ years. Given similar 

sensitivity values and near perfect specificity across databases, it followed that adjusted IRs increased 

roughly proportionally after adjustment across strata. This did not reduce heterogeneity as shown by 

similar PI widths and Tau2 values between unadjusted and adjusted pooled estimates. 

For DVT and PE, sensitivity was higher among persons 55-64 years and among males 0-85+ years 

compared to AMI and IS in the same strata. Although these sensitivity values were higher, they were 

unevenly distributed by database. Given this finding with near perfect specificity across databases, it 

followed that adjusted IRs both increased and decreased across strata. Like AMI and IS, this did not 

reduce heterogeneity as shown by similar PI widths and Tau2 values between unadjusted and adjusted 

pooled estimates. 

The greater and consistent AMI and IS IR increases across databases compared to that of DVT and PE was 

reflected by larger EASE values for the former conditions than the latter. 

Limitations of this work include our use of five US databases, 4 of which are administrative claims, so 

there is little prior expectation that phenotype errors would be substantially different. We also used 

simple rather than multidimensional or probabilistic quantitative bias analysis methods[10]. Probabilistic 

bias analysis may reduce the impact of inaccurate or biased phenotype error point estimates, which is 

common to validation studies. We note our pooled results had wide PIs, which is a function of including 

few databases in the meta-analysis. PI width can be reduced by including more sources in future studies. 

Lastly, we reported and interpreted a subset of results that did not include age × sex strata. It is likely 

that IR heterogeneity within age × sex strata may be reduced by phenotype error correction. 
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