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Background

Electronic phenotyping, the process of extracting meaningful health characteristics from digital health 
data, is a cornerstone of modern biomedical research and personalized medicine. With the advent of 
electronic health records (EHRs) and the explosion of digital health data, the potential to leverage this 
information for improved patient care and innovative medical research has grown exponentially. 
Traditionally, phenotyping relied on manual methods, involving comprehensive literature reviews and 
collaborative efforts among clinicians and researchers to define specific health outcomes, diseases, or 
conditions 1,2 . This process, although thorough, is time-consuming and not easily scalable 3,4.

The integration of structured and unstructured data has given rise to advanced electronic phenotyping 
methods 5,6. These methods utilize rule-based systems, machine learning (ML), and natural language 
processing (NLP) to analyze vast datasets, offering more precise and comprehensive phenotypic insights7. 
While rule-based systems involved predefined criteria and logical conditions to identify phenotypes, ML 
techniques included supervised, unsupervised, and weakly supervised methods8 allowing for data-driven 
identification and classification of phenotypes. The expansion of NLP further enhances this capability by 
enabling the extraction of relevant information from free-text clinical notes, thereby expanding the 
scope of data that can be analyzed.

Recent advancements in machine learning, particularly the development of large language models 
(LLMs) such as PhenoBCBERT and PhenoGPT9, have revolutionized electronic phenotyping. These 
models, equipped with hundreds of billions of parameters, leverage few-shot learning to achieve high 
performance with minimal training examples. This capability significantly reduces the time and effort 
required to define and refine phenotypes, making the process more scalable and adaptable to the 
fast-paced advancements in medical research and emerging health crises .

Methods

In this work, we propose an innovative approach to address the scalability challenge in electronic 
phenotyping. Our work is anchored in two main objectives: first, to define a standard evaluation task/set 
specifically tailored for this domain, and second, to evaluate various prompting approaches for extracting 
phenotype definitions from LLMs. The establishment of a standard evaluation task is crucial as it serves 
as a benchmark to ensure that the outputs produced by LLMs are not only useful but reliable. To create 
an evaluation set we used 10 professionally created phenotypes: five from PheKB10 and five from the 
OHDSI phenotype library11. Extracting phenotypes from sources like OHDSI is easier due to their 
structured format and use of the OMOP Common Data Model. In contrast, PheKB offers flexibility 
without a mandated data model, requiring more effort to adapt algorithms across different systems. To 
streamline this, we manually curated and developed automated code to extract and format elements 
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from PheKB phenotypes for automatic evaluation.

To evaluate prompting approaches to extract phenotype definitions from LLMs, we experimented with 
several methods (Zero-shot, One-shot, Iterative prompting, Seeding) and finalized a prompt for 
consistent results. The final prompt was: “Provide a computational phenotype for <INSERT_PHENOTYPE> 
with codes, their names, logical conditions, and code counts in tabular format.” We evaluated LLM 
efficiency in two scenarios: comparing definitions from GPT-3.5 and GPT-4, and comparing GPT-4 
definitions with human-curated ones. Metrics included code overlap, string overlap, logical matching, 
and analysis of inconsistencies and incorrect definitions.

Results

Key findings indicate that GPT models excel at generating precise codes but struggle with textual strings, 
showing variability in outputs across iterations. Interestingly, LLMs effectively extract logical conditions 
for including or excluding codes in phenotype definitions. This variability in code and string overlap is 
partly due to the diverse code systems used in literature and the definitions12. Table 1 presents the 
results of comparison between GPT 3.5 versus GPT 4.

GPT-4 generates codes with marginally higher reliability than textual strings or concept names. Despite 
generating fewer codes overall, GPT-4’s codes may have a higher positive predictive value (PPV) for 
accurately identifying intended phenotypes, suggesting their specificity and relevance are high. This 
implies that GPT-4 might be averaging codes from sources and surfacing the most popular ones. 
However, hallucinations were present in both models, with GPT-3.5 exhibiting a higher tendency for 
inaccuracies than GPT-4. Table 2 presents the results of comparison between human definitions versus 
GPT models.

Metric Average % Minimum % Maximum %

Codes overlap 41.26 0.00 75.00

Logic overlap 80.00 50.00 100.00

Strings overlap 28.52 0.00 50.00

Table 1. Comparison between GPT 3.5 vs GPT 4

Using Biomedical Content Explorer13 linked with PubDictionaries, ICD10, and ICD10-CM dictionaries, we 
compared GPT-3.5 and GPT-4 in generating phenotype codes. The results highlight the models' 
weaknesses, particularly their inaccuracies and hallucinations. These issues were more pronounced for 
less-documented phenotypes, underscoring the need for cautious use and meticulous verification of 
LLM-generated data. Enhancing training methodologies to address literature scarcity on specific 
phenotypes is crucial to improving model accuracy. Figure 1 presents the comparisons of GPT 
hallucinations when producing codes.
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Model Metric Average % Minimum % Maximum %

 Codes overlap 50.94 20.00 88.89

GPT 4 Logic overlap 90.00 50.00 100.00

 Strings overlap 48.59 0.00 100.00

 Codes overlap 27.51 10.00 85.20

GPT 3.5 Logic overlap 70.20 0.00 90.00

 Strings overlap 41.28 0.00 75.12

Table 2. Comparison between human definition vs GPT models

Figure 1. Comparisons of GPT hallucinations when producing codes

Conclusion

Our exploration of LLMs for automating phenotype definition extraction highlights their potential to 
enhance scalability and efficiency in digital healthcare. While GPT-3.5 and GPT-4 show promise in 
generating medically relevant codes, challenges remain in achieving consistent textual output and 
avoiding inaccuracies. The study underscores the need for robust evaluation and validation frameworks 
to ensure LLM reliability. Despite hallucinations and inconsistencies, GPT models can serve as valuable 
initial steps or augmentation tools, significantly streamlining and improving electronic phenotyping 
methodologies.
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