
Utilizing ARACHNE runtime environments packaging know-how in preparation for running

network studies

Konstantin Yaroshovets1, Adam Black2, Alexey Manoylenko3, Gregory Klebanov4

1, 3, 4 Odysseus, an EPAM company
2 Erasmus Medical Center

Background

Reacting on a need to adapt to miscellaneous infrastructural requirements and an ability to rapidly

reference necessary changes in runtime environments with their transparent distribution after

ARACHNE Execution Engine 2.0.01 and its subsequent released versions extended a possibility to

support multiple runtime environments allowing runtime environments being prepared as Docker

images so that an analysis execution can be performed as a dedicated Docker container

During deployment an administrator configures if ARACHNE Execution Engine should work with

runtime environments based on Docker images and then handle the appropriate requests from a

client which specifies which Docker image should be explicitly used to run an analysis creating a

separate Docker container for that. An analysis execution log available at runtime, realtime analysis

execution status and a possibility to cancel a running execution are features being supported

HADES2 packages are usually released each six months and an “umbrella” renv.lock file is distributed

based on which a runtime environment is built and then available for ARACHNE Execution Engine. For

instance, DARWIN EU®3 has a need to have proprietary runtime environments which can be easily

maintained and in case of changes requested modified by engineers so that they are available after

for debugging and convenient analysis execution both in the underlying organization infrastructure

and on an engineer’s host

Methods

The existing approach4 of building a runtime environment as a tarball with an operating system, R

and Java runtimes and R packages installed is supplemented with a possibility to additionally build a

Docker image so that both techniques can be used depending on operational requirements. The

build scripts are versioned so that a particular runtime environment can be built for a specific use

case and retrospectively

Results

A version of ARACHNE Execution Engine starting from release 2.0.0 supports both configuration

options when an analysis execution is performed by a schroot command or by a Docker container. The

scripts which allow building runtime environments for both execution modes should be available for

their further extensions on OHDSI GitHub. An additional system improvement has been implemented

(after version 2.2.1) so that ARACHNE Execution Engine if configured correspondingly can serve

requests from clients in the dual mode performing an analysis execution whether in a Docker

container or in an isolated environment with the help of schroot depending on the client’s request

parameters

Conclusion

A new 2.x series of ARACHNE Execution Engine gives a flexibility on choosing an approach how to build

runtime environments and update them when necessary and not neglecting any functional

requirements defined for a secured reproducible study execution. In some institutions allowing

Docker might be cumbersome though when it is not so some time which is required to unpack a tarball

could be already spent on an analysis execution. Though these aspects don’t sound like a major

disadvantage of a particular mode sometimes it might be useful for a decision maker

An important topic for the future solution development should be standardization of approaches on

how runtime environments are centrally stored and distributed even though an existing build-on-

demand method is rather straightforward and less error prone

References

1. https://github.com/OHDSI/ArachneExecutionEngine
2. https://ohdsi.github.io/Hades/packages.html
3. https://www.darwin-eu.org/
4. https://github.com/odysseusinc/DockerEnv

https://github.com/OHDSI/ArachneExecutionEngine
https://ohdsi.github.io/Hades/packages.html
https://www.darwin-eu.org/
https://github.com/odysseusinc/DockerEnv

