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Background 

Difference-in-differences (DiD) analysis is a statistical method used to estimate causal effects by 
comparing changes in outcomes over time between an intervention group and a control group1,2. In 
political science and biomedical research, DiD analysis has been used to assess the impact of 
interventions3,4 or policy changes5,6.  
 
A critical challenge in DiD analysis is the reliance on the parallel trends assumption. This assumption states 
that, in the absence of intervention, the intervention and control groups would, on average, have followed 
a parallel trajectory over time. However, a frequent issue arises when the effect of the unmeasured 
confounders varies with time7,8. Such variation can lead to diverging trends between the control and 
intervention groups and, if not accounted for, can introduce a systematic bias to the estimated effects of 
the intervention.  
 
In recent years, negative control outcome (NCO) experiments9–11, which assume no intervention effect on 
the NCO, have been used to calibrate the systematic bias such as the unmeasured confounding bias. For 
example, R package EmpiricalCalibration in OHDSI is equipped with such an empirical calibration method 
to calibrate the systematic bias12. However, existing methods for NCO experiments are generally limited 
to the regression analysis rather than DiD model. Developing methods to incorporate NCOs in DiD analysis 
is of paramount importance to extend the empirical calibration framework from the OHDSI community.  
 
We propose a paradigm-shifting novel framework for DiD analysis, termed NC-DiD, including a hypothesis 
testing procedure for possible violation of the parallel trends assumption and a data-driven calibration 
process utilizing the NCO experiments. To the best of our knowledge, it is the first time to incorporate 
multiple NCOs within DiD analysis. We applied our method to a study focused on racial/ethnic differences 
in health outcomes following COVID-19 infection. 
 
Methods 

We consider measuring outcomes 𝑌 over two time periods, denoted by 𝑇, where 𝑇 = 0 represents the 
pre-intervention period and 𝑇 = 1  represents the post-intervention period. We aim to use the DiD 
method to estimate the intervention effect 𝜏, which is the average discrepancy in 𝑇 = 1 between the 
potential outcome under intervention and potential outcome under control, within the group that 
received the intervention (known as the average treatment effect on the treated). The DiD method 
analyzes the differences in changes of 𝑌 between the intervention group 𝐴 = 1 and the control group 



 

 
 

𝐴 = 0. The DiD model requires a parallel trends assumption. Typically, the assumption of parallel trends 
is violated, often when the effect of the unmeasured confounders is time-varying. This introduces a 
systematic bias, denoted 𝑏, to the model. To calibrate such systematic bias, we introduce our proposed 
method, NCO-Calibrated DiD (NC-DiD), which assumes the linearity and transferability between NCO and 
outcomes of interest. 
Figure 1 demonstrates the steps of the proposed NC-DiD method. In the first step, we used the propensity 
score to match the treatment group to the control group. To implement the DiD method, we apply the 
log-linear model to the matched cohort: 

log(𝐸(𝑌!|𝐴! , 𝑇!)) = 𝛽" + 𝛽#𝐴! + 𝛽$𝑇! + 𝛽%𝐴!𝑇! , 
where 𝛽"  is a constant, and 𝛽# , 𝛽$, and 𝛽%  are coefficients of 𝐴, 𝑇, and their interaction, respectively. 
Notably, 𝛽% represents the intervention effect in risk ratio (RR), which may be affected by systematic bias. 
The estimated 𝛽3% is derived from this model. In the second step, we repeat this procedure using the NCOs, 
assuming that the intervention does not affect these outcomes. Applying this procedure to the NCOs 
provides an estimate 𝑏4 of the systematic bias. If 𝑏 = 0, this suggests that the parallel trends assumption 
holds. Based on 𝑏4, we derive a test statistic 𝑇 = |𝑏4|/SE(𝑏4) and corresponding two-sided test of the null 
hypothesis, 𝐻": 𝑏 = 0. In the last step, we calibrate 𝛽3%  by subtracting the estimated bias, yielding the 
calibrated estimator  𝜏̂ = 𝛽3% − 𝑏4.  

 

 
Figure 1. Workflow for the proposed method NC-DiD. It contains three steps. The first step is to implement the DiD method 
without the calibration and to obtain the estimated 𝛽"! of the intervention effect. The second step is to conduct the negative 
control outcome experiments and to estimate the systematic bias 𝑏. The third step is to calibrate the process and to obtain the 
calibrated intervention effect 𝜏̂. 
 

Results 

Post-acute sequelae of SARS-CoV-2 infection (PASC), include symptoms like fatigue, shortness of breath, 
and cognitive dysfunction persisting beyond 28 days after the initial infection. We investigate whether the 
infection of SARS-CoV-2 increases racial/ethnic differences in the PASC symptoms and conditions. We 
additionally grouped the PASC symptoms and conditions into systematic (conditions) and syndromic 
(symptoms) categories13. We defined documented moderate to severe COVID-19 infection as cases where 
patients had positive PCR/antigen tests or a COVID-19 diagnosis, accompanied by moderately severe 
conditions such as gastroenteritis, dehydration, and pneumonia, or severe conditions requiring ICU 
admission or mechanical ventilation14. To illustrate our proposed method, we utilize a synthetic dataset 
including any patients under the age of 21 who had at least one documented moderate or severe COVID-
19 infection. A total of 15,373 children and adolescents were included. The NCO is selected by a literature 



 

 
 

review process. 

 

 

 
Figure 2. Results for the scientific question of investigating the racial/ethnic disparities after the COVID-19 infection. (a) showed 
the systematic bias of the NHB, Hispanic, and AAPI compared with NHW. (b) demonstrated the calibrated results of the NC-DiD. 
 
Figure 2 showed the test of parallel trends assumption for NHB versus NHW was rejected (p-value <0.001), 
and the estimated systematic bias was -0.13. Similarly, the estimated systematic bias for AAPI versus NHW 
and Hispanic versus NHW were -0.30 (two-sided test p-value <0.001) and 0.01 (p-value =0.19), 
respectively. We also show the results from the DiD method (before calibration) and the proposed method 
(after calibration). For example, among the AAPI group, we observe significant evidence of racial/ethnic 
differences due to COVID-19 infection after calibration (RR 1.35, 95% confidence interval (CI) 1.19 to 1.54). 
Interestingly, the results before calibration show moderate, though not significant, evidence for a 
difference in the same direction (RR 1.01, 95% CI 0.89 to 1.15). Results before calibration show a greater 
association though not statistically significant Comparing the NHB and NHW groups, we found evidence 
of racial/ethnic differences for any visits to PASC symptoms and conditions after the COVID-19 infection 
by using the proposed calibration method. Specifically, the RR for the prevalence of any visits with PASC 
symptoms and conditions after the COVID-19 infection is 1.14 for NHB compared to NHW (95% CI 1.06 to 
1.22).  
 
Conclusion 

We present a novel framework that directly addresses the significant challenge in DiD analyses, that 
is, the parallel trends assumption may not hold due to the impact of time-varying unmeasured 
confounders. Through rigorous testing and calibration methods incorporated in our NC-DiD 
framework, we demonstrate that our approach not only identifies when the parallel trends 
assumption does not hold but also adjusts for this, providing a more accurate estimation of causal 
effects.  
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