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Background 

Largely driven by the widespread adoption of EHRs in U.S. healthcare settings1 of real-world data 

(RWD) has yielded more robust and generalizable findings, including those that would be 

impossible to develop with confidence using smaller datasets. These approaches have been 

facilitated by the development of distributed research networks (DRNs). Centralized DRNs pool 

patient data in a central database; decentralized DRNs retain data within individual sites, a 

common structure to enhance data security. 

 

Notable examples of centralized research networks include approximately 60% of the networks 

within the National Patient-Centered Clinical Research Network (PCORnet)1,2, which is a network 

of networks, such as PEDSnet3, OneFlorida+4, INSIGHT5, etc. Beyond the scope of PCORnet, 

there are additional centralized networks such as IBM Watson Health6, the All of Us Consortium7, 

Flatiron Database8, Optum9,10, UK biobank11, and eMERGE12. In recent years, particularly within 

the context of the COVID-19 pandemic, centralized initiatives like the National COVID Cohort 

Collaboration (N3C)13,14 and the RECOVER initiative15 have been launched. In contrast, about 

40% of PCORnet's networks adopt a decentralized research infrastructure, featuring networks 

such as the PaTH16 and STAR17 networks, as well as the Greater Plains Collaborative (GPC)18. 

Other decentralized initiatives aimed at facilitating international studies include The Consortium 

for Clinical Characterization of COVID-19 by Electronic Health Records (4CE)19,20, a key player in 

COVID-19 research, and the Observational Health Data Sciences and Informatics (OHDSI) 

community21, a key stakeholder in the European Health Data and Evidence Network (EHDEN)22. 

 

Despite the conceptual appeal of these DRNs, their use remains logistically challenging because 

sharing patient-level data across clinical sites typically involves legal agreements, secure file 

transfers, and repeated back-and-forth communication, each requiring dedicated advocates at 

each institution. Centralized DRNs have invested extensive effort to streamline these processes. 

Nonetheless, administrative burden remains large and costly process, adding delay and drag. 

 

To address the challenge in data sharing, the adoption of federated learning algorithms, which 

enable the conduct of multi-site studies with larger sample sizes without requiring patient-level 

data sharing. These algorithms also enhance the power and provide more generalizable clinical 

evidence. This approach is particularly beneficial for decentralized DRNs, especially those 

involving international collaborators, where sharing patient-level data among hospitals is rarely 

possible due to the privacy concerns. 

 

Another significant and practical consideration in multi-site analysis is the potential existence of 

between-site patient heterogeneity. Different sites often attract patients varying considerably in 

illness severity, comorbidities, social circumstances, and health care needs. This between-site 

heterogeneity creates confounding bias unless recognized and accounted for. No federated 

algorithm for GLMM has yet been developed that combines both lossless and one-shot properties. 

The "lossless" property ensures that results from the federated algorithms align with those 
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obtained in the ideal setting where patient-level data are pooled together for analysis, also known 

as pooled analysis, which is considered the gold standard. The "one-shot" property refers to 

achieving results in a single communication round, eliminating the typical back-and-forth data 

sharing required across collaborating sites and thereby streamlining the process significantly. 

 

To address the methodological gap in existing federated learning algorithms for GLMM that lack 

the possession of both lossless and one-shot properties, we introduce a novel federated learning 

algorithm designed to meet the following criteria: (1) requires only summary statistics instead of 

patient-level data; (2) accounts for between-site heterogeneity at both patient-level and site-level; 

(3) maintains the lossless property; and (4) achieves results in a single round of communication. 

Specifically, we propose the Collaborative One-shot Lossless Algorithm for GLMM (COLA-

GLMM) algorithm, developed to meet the practical demands of data privacy and efficiency. To 

assess the performance and applicability of our proposed COLA-GLMM algorithm, we conducted 

extensive simulation studies and a truly decentralized real-world use-case involving eight data 

contributors from three countries within the OHDSI network. 

 

Methods 

Generalized linear mixed model (GLMM) is an extension of generalized linear model (GLM) with 

additional random effects. Assume there are 𝐾 hospitals in total within a network, the k-th site has 

numbers of patients 𝑛𝑘 and the total number of patients within such network is 𝑁 = ∑𝑘  𝑛𝑘. For 

subject 𝑖 at hospital 𝑘, we denote 𝑦𝑘𝑖  the outcome, 𝒙𝑘𝑖  the 𝑝-dimensional covariates with fixed 

effects 𝜷, and 𝑏𝑘 the random effect, 𝑘 = 1,… , 𝐾, 𝑖 = 1,… , 𝑛𝑘. Conditional on the covariates 𝑿𝑘 =

(𝒙𝑘1, … , 𝒙𝑘𝑛𝑘)
𝑇

 and random effects 𝑏𝑘 , the outcome 𝑦𝑘 = (𝑦𝑘1, … , 𝑦𝑘𝑛𝑖)
𝑇

 are assumed to be 

independent observations with means and variances specified by a generalized linear model as 

follows: 

𝐸(𝑦𝑘𝑖 ∣ 𝑏𝑘) = 𝜇𝑘𝑖 = 𝑔(𝜂𝑘𝑖) = 𝑔(𝒙𝑘𝑖
𝑇 𝜷 + 𝑏𝑘)     (1) 

Var⁡(𝑦𝑘𝑖 ∣ 𝑏𝑘) = 𝑣(𝜇𝑘𝑖)      (2) 

where 𝑔(∙) = ℎ−1(∙) is the link function that connects the conditional means 𝜇𝑘𝑖  to the linear 

predictor 𝜂𝑘𝑖 , and 𝑣(⋅) is the variance function. The random effects 𝑏𝑘 are assumed to follow a 

normal distribution with mean 0 and variance 𝜃 (i.e., 𝑏𝑘 ∼ 𝑁(0, 𝜃) ).  

Consider a centralized network where patient-level data from various contributors are aggregated 

into a central database or data warehouse. To fit GLMM on this multi-site data, the standard 

procedure for estimating the GLMM parameters (𝜷, 𝜃) is through maximizing the integrated quasi-

likelihood function, which is written as 

𝐿(𝜷, 𝜃) = {2𝜋𝜃}−𝐾/2∏  𝐾
𝑘=1 ∫  

∞

−∞
exp⁡[−∑  

𝑛𝑘
𝑖=1   𝑑𝑘𝑖(𝑦𝑘𝑖 , 𝜇𝑘𝑖)/2 − 𝑏𝑘

𝑇𝜃−1𝑏𝑘/2]𝑑𝑏𝑘,  

 (3) 
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where 𝑑𝑘𝑖(𝑦, 𝜇) = −2∫  
𝜇

𝑦
(𝑦 − 𝑢)/𝜈(𝑢)𝑑𝑢. However, the numerical integration techniques required 

for calculating the likelihood function become exceedingly complex when these are irreducibly 

high-dimensional integrals. Therefore, the Penalized Quasi-Likelihood (PQL) method was 

proposed as an approximate approach for estimating parameters in GLMM23. The PQL method 

has proven its suitability for practical applications across various fields24–26.  

Specifically, by applying the Laplace's method for integral approximation, the PQL method leads 

to iteratively fitting a linear mixed model (LMM). The log-likelihood of LMM with all patient-level 

data from 𝐾 sites can be written as: 

ℓ(𝜷, 𝜃) = −
1

2
∑  𝐾
𝑘=1 {log⁡|Σ𝑘| + (𝑌𝑘

∗ − 𝑿𝒌
𝑇𝛽)

𝑇
Σ𝑘
−1(𝑌𝑘

∗ − 𝑿𝒌
𝑇𝜷)},    (4) 

where 𝑋𝑘 is the covariate matrix, 𝑌𝑘
∗ is the working outcome vector, | ∙ | is the matrix determinant, 

and Σ𝑘 = Σ𝑘(𝜃) = 𝜃𝟏𝑛𝑘𝟏𝑛𝑘
𝑇 +𝑊𝑘

−1,𝑊𝑘 = diag⁡{𝑣(𝝁̂𝒌)}. In the scenario where we are interested in 

analyzing the data from a centralized DRN, the above Equation (4) is then fitted on the pooled 

data to obtain (𝜷̂, 𝜃). We also refer to such analysis directly using the PQL method on the pooled 

dataset as the ‘pooled analysis.' This analysis serves as the benchmark (i.e., gold standard) 

against which we compare the subsequent implementation and empirical evaluation of the 

proposed federated learning algorithm.  

 

Let 𝒙(𝑗) ∈ {0,1}𝑝⁡denote the j-th unique individual combination 𝒙, where 𝑗 = {1, … , 𝑞}. All possible 

combinations can be represented as the 𝒙(1), 𝒙(2), … , 𝒙(𝑞) . When implementing COLA-GLMM, 

within a single round of communication, the summary statistics collected from each data 

contributor consist of a matrix with dimension 𝑞⁡ ×⁡ (𝑝 + 2 + 𝑝). The first 𝑝 columns are all the 

possible combinations, i.e., 𝒙(1), 𝒙(2), … , 𝒙(𝑞). The rest additional columns for the k-th site include: 

1. A 𝑞 -dimensional vector 𝑪𝑘 = {𝑐𝑘1, … , 𝑐𝑘𝑞} , where 𝑐𝑘𝑗 = ∑  
𝑛𝑘
𝑖=1  𝐼(𝒙𝑘𝑖 = 𝒙(j)), counting the 

number of patients for each combination of 𝒙.  

2. A 𝑞-dimensional vector 𝑺𝑘 = {𝑠𝑘1, … , 𝑠𝑘𝑞}, where 𝑠𝑘𝑗 = ∑  
𝑛𝑘
𝑖=1 𝑦𝑘𝑖  𝐼(𝒙𝑘𝑖 = 𝒙(j)), representing 

the sum of observed outcome values 𝑦𝑘𝑖  ⁡for patients who has corresponding combination 

of 𝒙.  

3. A 𝑞 × 𝑝 dimensional matrix 𝑼𝑘 = {𝒖𝑘1
𝑇 , … , 𝒖𝑘𝑞

𝑇 } , where 𝒖𝑘𝑗 = ∑  
𝑛𝑘
𝑖=1 𝒙𝒌𝒊

𝑇 𝑦𝑘𝑖  𝐼(𝒙𝑘𝑖 = 𝒙(j)) , 

representing the sum of 𝒙𝒌𝒊
𝑇 𝑦𝑘𝑖 for patients who has corresponding combination of 𝒙.  

 

Once the coordinating center collects the summary statistics matrices from all data contributors, 

it can construct the likelihood function as shown in Equation (4). This reconstruction enables the 

estimation of the parameters of interest to obtain (𝜷̃, 𝜃), where 𝜷̃, the estimated fixed effect, 

represent the association between the outcome of interest and the covariates, thereby helping to 

identify the risk factors. Additionally, we can also estimate the random effect 𝜃𝒌, which capture 

the heterogeneous site-specific effects, allowing for the quantification of between-site 
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heterogeneity and site-specific predictions.  

 

Simulation studies 

 

To evaluate the performance and accuracy of the proposed COLA-GLMM algorithm, we 

conducted simulation studies to compare it with the benchmark pooled analysis, which involves 

aggregating patient-level data from all contributors. The synthetic data were simulated based on 

summary statistics shared by data contributors from the real-world application. Further details on 

the data and study cohort are available in the subsequent 'Data Application' section. We utilized 

a logistic regression model, distributing data across eight sites with random sample sizes ranging 

from 500 to 50,000. We generated nine binary risk factors with prevalence rates varying from 10% 

to 60% and modeled the binary response variable by adjusting coefficients from -0.4 to 0.5. The 

results from the COLA-GLMM algorithm were benchmarked against the gold standard estimates. 

Additionally, to assess the impact of different cell suppression policies on data sharing, we 

reported results from the COLA-GLMM algorithm using cell sizes adjusted to 3 for groups ranging 

from 1 to 5, and to 6 for groups ranging from 1 to 11, following the CMS cell suppression policy27. 

 

 

 
Figure 1. Simulation results visualized via Bland-Alterman plot for comparison between the 

estimated effect sizes obtained by benchmark (i.e., the pooled analysis) and proposed COLA-

GLMM, using different cell suppression 

 

Figure 1 displays a Bland-Altman plot comparing the COLA-GLMM method to the pooled 

analysis. The y-axis shows the differences in estimated fixed effects on a log(odds ratio) scale, 

while the x-axis presents the average estimated effect sizes for both methods. Points closer to 

the horizontal line at zero indicate greater accuracy of the COLA-GLMM relative to the pooled 

analysis. Two covariates are circled to emphasize their proximity in values, showcasing the 

precision of the COLA-GLMM method.  
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Data Application  

To demonstrate the applicability of the proposed COLA-GLMM algorithm in a decentralized DRN 

(i.e., where the patient-level data are not allowed to be shared across sites), we collaborated with 

eight data contributors from the OHDSI network. We are interested in identifying the risk factors 

of COVID-19 mortality among hospitalized patients and examining the temporal consistency of 

these risk factors across three time periods (i.e., pre-Delta, Delta, and Omicron periods or waves) 

during the COVID-19 pandemic. The data contributors include: 

• Optum® de-identified Electronic Health Record Dataset (Optum EHR); 

• Optum’s Clinformatics® Data Mart (CDM or Clinformatics®); 

• IQVIA Hospital CDM;  

• University of Florida Health;  

• Department of Veterans Affairs;  

• Integrated Primary Care Information (IPCI), The Netherlands; 

• Columbia University Irving Medical Center (CUIMC);  

• Parc Salut Mar Barcelona (PSMAR), Spain.  

 

Study Cohort & Design 

The study cohort included patients aged 18 years and older who had an inpatient visit with either 

a diagnosis of COVID-19 or a positive test for COVID-19 between 21 days prior to the inpatient 

visit and the end of the inpatient visit, with the visit start as the index date. Patients were excluded 

if they had been observed in the database for fewer than 180 days prior to the index date (i.e., 

date of hospitalization).The primary clinical outcome was patient death during or up to 7 days 

after the inpatient visit. The patient-level covariates included age, sex, Charlson Comorbidity 

Index, history of obesity, Chronic Obstructive Pulmonary Disease (COPD), hypertension, 

diabetes, and kidney disease. All participating sites standardized their data into the OMOP 

Common Data Model (CDM).  

 

Implementation 

In terms of implementing the framework with all collaborators, a web-based secure platform PDA-

OTA (Privacy-preserving Distributed Algorithm Over the Air, https://pda-

ota.pdamethods.org/home/) was employed, which enables synchronization of project information 

and status, allocation of aggregated data (AD), and encryption of hospital information. This 

platform served as the coordinating center for the collaborating sites to upload and manage the 

AD. In this study, we adopted a streamlined communication process with only a single round of 

communication. Each participating site had two main responsibilities: firstly, downloading the 

control file from the PDA-OTA platform, and secondly, executing an R study package to generate 

AD using their local patient-level data, followed by uploading the AD to the PDA-OTA platform.  
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Estimation Results 

Figure 2 reports estimated odds ratios (OR) and 95% confidence intervals (CI) for identifying 

COVID-19 mortality risk factors among hospitalized patients using eight decentralized databases 

using the COLA-GLMM algorithm. Based on the figure presented, several risk factors have been 

consistently identified as significant across three study time periods, including:  

• Age: Being aged 80 and above consistently showed the highest odds ratios among all risk 

factors across the three periods, indicating a significantly increased risk of mortality. This 

risk is also notable in the age group of 65-80, though less pronounced than in the older 

age group.  

• Charlson Comorbidity Index (CCI): Higher CCI scores are statistically associated with 

an increased risk of mortality. This association remains consistent across all periods, with 

a notably stronger correlation during the Delta period. 

• Sex (female): There is evidence showing that female patients consistently exhibit a lower 

risk of mortality compared to males across all periods, though the difference is relatively 

modest. 

These findings align with several published studies on risk factor identification28–31. 

 

Figure 2: Estimated odds ratios and 95% confidence intervals for identifying COVID-19 mortality risk factors 

among hospitalized patients using eight decentralized databases using the OGLMM algorithm. In accordance 

with the OHDSI cell suppression policy, all cells containing values less than 5 were imputed as 3 when sharing 

aggregated data across databases. 

 

 

Conclusion 

We introduced the COLA-GLMM algorithm, a pioneering approach designed for multi-site studies 
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utilizing distributed data without compromising on privacy or accuracy. The algorithm's unique 

oneshot feature, coupled with its ability to preserve the original data's integrity, marks a significant 

advancement in the field of federated learning. Throughout our simulation studies and real-world 

use case, we demonstrated that the COLA-GLMM algorithm not only maintains data 

confidentiality but also ensures that the aggregated results are equivalent to those obtained from 

a centralized analysis. This equivalence is critical, as it provides assurance that the privacy-

preserving measures do not detract from the analytical value of the data. By requiring minimal 

rounds of communication and ensuring that data never leaves its original site in an identifiable 

form, the COLA-GLMM algorithm proves its suitability for sensitive and large-scale studies. 
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