Data harmonization and federated learning for multi-cohort dementia research using the OMOP CDM

A Netherlands Consortium of Dementia Cohorts case study

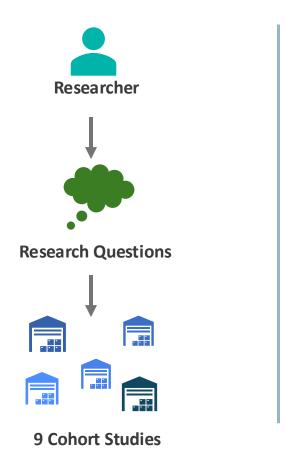
Journal of Biomedical Informatics

Volume 155, July 2024, 104661

Original Research

Data harmonization and federated learning for multi-cohort dementia research using the OMOP common data model: A Netherlands consortium of dementia cohorts case study

Pedro Mateus ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\square}{\sim}$, Justine Moonen ^{b c}, Magdalena Beran ^{d e}, Eva Jaarsma ^{f g}, Sophie M. van der Landen ^{b c}, Joost Heuvelink ^b, Mahlet Birhanu ^h, Alexander G.J. Harms ^h, Esther Bron ^h, Frank J. Wolters ⁱ, Davy Cats ^j, Hailiang Mei ^j, Julie Oomens ^k, Willemijn Jansen ^k, Miranda T. Schram ^{l m n o}, Andre Dekker ^a, Inigo Bermejo ^a



Netherlands Consortium of Dementia Cohorts (NCDC)

Goal: "understand dementia in order to find clues for primary prevention by performing analysis of cohorts on aging and dementia."

Strategy: Federated Learning

Data remains in each institute. The analyses results are shared with the researcher using a software tool.

Overview

9 cohort studies (± 40,000 participants) from The Netherlands with data on cognitive decline and dementia.

- Population-based studies (cross-sectional and longitudinal) and memory clinic data.
- Tabular data: demographics, mortality, comorbidities, dementia/mci diagnosis, cognitive tests, plasma biomarkers.
- Imaging data: MRI scans.

Federated infrastructure

- Installing the software at each cohort.
- Connecting the database.
- Preparing the algorithms for analysis.

Local data extraction and harmonization

- What data model is suitable for cohort data?
- Standardize the data?
- ETL tools available?

Strategy

Selection the set of variables necessary for the analysis. Choosing the standard vocabulary and concepts.

Variable	Domain	Description	
age	Demographics	Age at baseline	
sex	Demographics	-	
diabetes_mellitus	Endocrine disorders	Diabetes Mellitus	
glucose_fasted	Blood measurements	Fasted glucose blood	
dementia_diagnosis	Diagnoses	Dementia diagnosis	

Consortium OMOP mapping

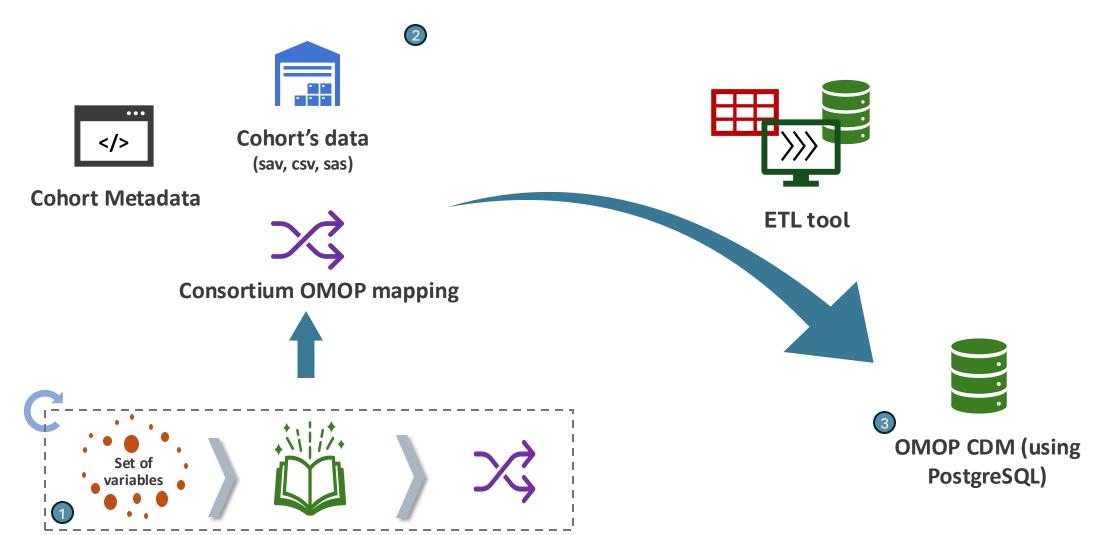
Variable	Туре	Visit Independent	ОМОР					
			Concept			Unit		
			Domain	Vocabulary	Concept ID	Description	Concept ID	Vocabulary
age	int	yes	Person	SNOMED	4265453	years	9448	UCUM
sex	int	yes	Person					
diabetes_mellitus	boolean	no	Condition	SNOMED	201820			
glucose_fasted	numeric	no	Measurement	SNOMED	4156660	mmol/L	8753	UCUM
dementia_diagnosis	boolean	no	Condition	SNOMED	4182210	-	-	

Strategy

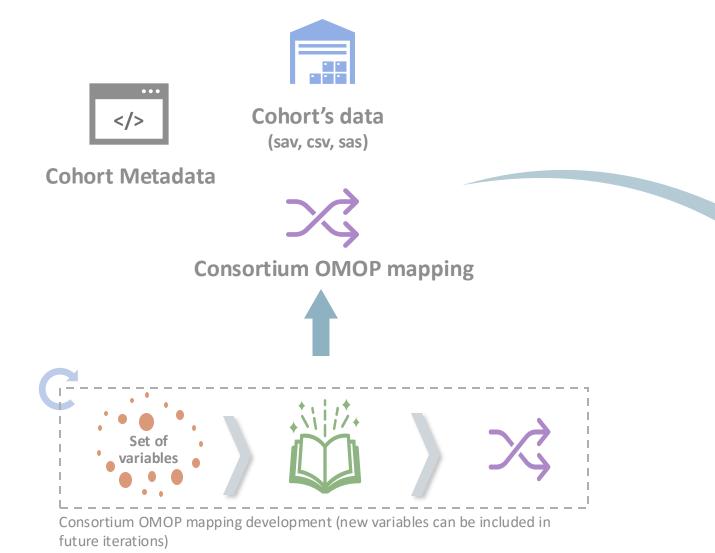
Cohort

Collect codebook information and experts' input. Identify the metadata for the necessary variables.

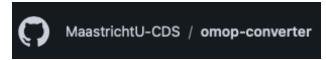
Cohort dataset


Age	SEX	N_GTS_WHO	N_DIABETES	Glucose_t0_FP	D_diag
54	2.0	3.0	0.0	4.2	4
78	1.0			5.8	
77	1.0	4.0			1

Cohort metadata


Variable	Source variable(s)	Categ	Condition	
		Values	Values Map	Condition
age	Age	-	-	-
sex	SEX	1.0;2.0;-	male;female;-	-
diabetes_mellitus	N_GTS_WHO;N_DIABETES_2b	4.0;1.0;-	yes;yes;no	4.0;1.0
glucose_fasted	Glucose_t0_FP	-	-	-
dementia_diagnosis	D_diag	3;4;5;-	yes;yes;no	-

ETL Process


Consortium OMOP mapping development (new variables can be included in future iterations)

ETL Process

ETL tool

Python based command line interface:

- Supports csv, spss, sas.
- Docker container available.

OMOP CDM (using PostgreSQL)

Achievements and Challenges

Cohort data harmonized to the OMOP CDM for the 9 cohorts.

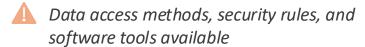
ETL tool to harmonize cohort data that decouples cohort and consortium metadata.

Federated infrastructure connecting the consortium cohorts.

Successfully performing analysis with the federated infrastructure.

Achievements and Challenges

Cohort data harmonized to the OMOP CDM for the 9 cohorts.


ETL tool to harmonize cohort data that decouples cohort and consortium metadata.

Federated infrastructure connecting the consortium cohorts.

Successfully performing analysis with the federated infrastructure.

Cohort experts support

Local support may not be available.

OMOP and Standardization

Complexity of the relational structure.

Interoperability depends on the standardization - lack of consensus

Adaptations needed to represent the cohort data

Legal agreements

Defining standard agreements for new methods of analysis.

Software tools

No direct access to the data by the ETL tool developing team.

Applications

Planning

2021

Federated infrastructure and data harmonization strategy

Trial

2022-2023

Development and testing of the summary statistics algorithm for OMOP

2nd Application

2023-2024

Linear models to explore the association between plasma biomarkers and cognition

Interoperability

2021-2022

Data harmonization of the 9 cohorts. Federated infrastructure installation

1st Application

2023-2024

Training a convolutional neural network across 3 cohorts to predict brain age

Next steps

2024-...

New applications, additional data, maintenance, and continuous improvement of the infrastructure and ETL tool.

Questions

Original Research

Data harmonization and federated learning for multi-cohort dementia research using the OMOP common data model: A Netherlands consortium of dementia cohorts case study

Pedro Mateus ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Justine Moonen ^{b c}, Magdalena Beran ^{d e}, Eva Jaarsma ^{f g}, Sophie M. van der Landen ^{b c}, Joost Heuvelink ^b, Mahlet Birhanu ^h, Alexander G.J. Harms ^h, Esther Bron ^h, Frank J. Wolters ⁱ, Davy Cats ^j, Hailiang Mei ^j, Julie Oomens ^k, Willemijn Jansen ^k, Miranda T. Schram ^{l m n o}, Andre Dekker ^a, Inigo Bermejo ^a

OMOP converter for cohort studies

https://github.com/MaastrichtU-CDS/omop-converter

Feel free to contact us

pedro.mateus@maastro.nl, inigo.bermejo@maastro.nl