

### PatientLevelPrediction WG

2024 Updates



# What is the PatientLevelPrediction WG?

We are a group of researchers interested in best practices for developing and implementing healthcare prediction models using observational data.

- We collaborate to answer method's research questions
- We run network studies (e.g., validating existing models across OHDSI databases)
- We develop prediction models (e.g., COVID prediction models)
- We maintain an R package to aid methods research/model development/network studies
- We discuss ideas about prediction model development



# Example projects

• External validation performance estimation using summary statistics (**Chen Yanover**)

• Comparison of deep learning and conventional strategies for disease onset prediction (Henrik John)

 Insights from a prognostic model implementation review (Alexander Saelmans)

• Seek Cover validation over time (Egill Fridgeirsson)

• Developing a set of benchmark tasks (Ross Williams)



Chen Yanover KI Research Institute



Henrik John Erasmus MC



Alexander Saelmans Erasmus MC



Egill Friðgeirsson Erasmus MC



Ross Williams Erasmus MC



• ...

### More examples

- Federated learning research how can we do federated learning
- Investigating the impact of the metric used to select hyper-parameters
- How does **data type/density** impact prediction
- Counterfactual prediction methods

• Do you have any prediction research topics?





# How to get involved?

- Sign up to the workgroup via <u>https://forms.office.com/Pages/ResponsePage.aspx?i</u> <u>d=IAAPoyCRq0q6TOVQkCOy1ZyG6Ud\_r2tKuS0HcGnq</u> <u>iQZUOVJFUzBFWE1aSVILN0ozR01MUVQ4T0RGNyQIQ</u> <u>CN0PWcu</u> (make sure to tick 'PLP: Patient-Level Prediction')
- •Reach out to Ross Williams or myself (Jenna Reps)
- •We meet every second Wednesday of the month @ 9am ET (next meeting is August 14<sup>th</sup>)





### R Package:

## https://github.com/OHDSI/PatientLevelPrediction

If you want to easily develop models using your OMOP CDM data try the package: remotes::install\_github('OHDSI/PatientLevelPrediction')

#### or

If you want to contribute to an R package that makes model development/validation a smooth process: let us know and start coding.



Figure 1. This plot shows commits by date to the GitHub repository for PatientLevelPrediction



### Estimating Model Performance in External Databases from Limited Statistical Characteristics: A Benchmark Study

Tal El-Hay, Jenna M Reps, Chen Yanover



- Performance of prediction models may deteriorate when applied to data sources not used for training
- → External validation
- Challenging, potentially iterative, task
- → Estimate performance in an external data source from its limited descriptive statistics\*
  - Seek patient-level weights that induce internal weighted statistics that are "similar" to the external ones
  - Compute performance metrics using the internal weighted cohort
  - \* Extracted per-study or literature-based







• LR, full

• LR, full





Results

### Accurate estimations, typically:

Discrimination (AUROC) $\leq 0.02$ Overall accuracy (Brier score) $\leq 0.001$ 

Calibration (calibration-in-the-large)  $\leq 0.005$ 





- Accurate estimations for all metrics, but depending on
  - Diversity of internal cohort re to external cohort (one-sided positivity)
  - Proper selection of features
- Some recommendations, diagnostics
- Useful in pre-deployment assessment, expedite collaborative model development



*El-Hay & Yanover*, Proceedings of the Conference on Health, Inference, and Learning (CHIL), 2022

Algorithm's GitHub repository





# Comparison of deep learning and conventional strategies for disease onset prediction

- OHDSI Network Study
- Collaborators:

Henrik John<sup>1</sup>, Chungsoo Kim<sup>2</sup>, Jan Kors<sup>1</sup>, Junhyuk Chang<sup>3</sup>, Hannah Morgan-Cooper<sup>4</sup>, Priya Desai<sup>4</sup>, Chao Pang<sup>5</sup>, Peter Rijnbeek<sup>1</sup>, Jenna Reps<sup>1,6</sup>, Egill Fridgeirsson<sup>1</sup>

<sup>1</sup>Erasmus University Medical Center, Rotterdam, The Netherlands
<sup>2</sup>Yale School of Medicine, New Haven, CT, United States
<sup>3</sup>Ajou University Graduate School of Medicine, Republic of Korea
<sup>4</sup>Stanford School of Medicine and Stanford Health Care, Palo Alto, CA, United States
<sup>5</sup>Columbia University Irving Medical Center, New York, NY, United States
<sup>6</sup>Janssen Research and Development, Titusville, NJ, United States







Definition of target-outcome pairs for onset prediction.

| Т | Target cohort  |
|---|----------------|
| 0 | Outcome cohort |

#### Prediction problems

- Dementia in persons above the age of 55.
- Bipolar disorder in persons newly diagnosed with major depressive disorder
- Lung cancer in persons who are cancer-free at first outpatient visit in the year.

**Step 2** Database extraction

Extract target and outcome cohort from database. Label intersection of cohorts as persons with the outcome in the target.

Databases

- IPCI
- AUSOM
- OPEHR
- OPSES
- STARR-OMOP
- CUIMC



Step 3 Model development

Partition data into train and test set. Develop models for various prediction methods on train set.

Prediction methods

- Logistic regression
- Xgboost
- ResNet
- Transformer



Evaluate discrimination and calibration performance of models on test set.

Test set

Evaluation metrics

- Discrimination: Area under the receiver operating characteristic curve
- Calibration: Eavg or Integrated Calibration Index



**Step 5** External validation

Evaluate discrimination and calibration performance of models on external data sources.

• CCAE

• MDCD

Databases

- IPCI
- AUSOM
- OPEHR MDCR
- OPSES
   STARR-OMOP
- CUIMC
- GERDA
- JMDC









Ranking of prediction method based on discrimination performance (AUROC) for:

A internally and externally validated models

No significant difference for internally validated models

**B** externally validated models

 ${\bf C}$  models developed and validated on OPSES and OPEHR

**D** models developed on IPCI, AUSOM, STARR-OMOP, and CUIMC and validated across all data sources except OPSES and OEHR









Implementation and Updating of Clinical Prediction Models A Systematic Review (Alexander)





### Implementation and Updating of Clinical Prediction Models A Systematic Review





### Implementation and Updating of Clinical Prediction Models **A Systematic Review**

- AI multidisciplinary teams
- **Prospective registry**
- **Research on updating strategy best practice**





## Covid validation over time

- In beginning of the Covid Pandemic OHDSI developed a prediction model
- Now after the pandemic is over we want to investigate performance of such models during the pandemic

Williams et al. BMC Medical Research Methodology (2022) 22:35 https://doi.org/10.1186/s12874-022-01505-z BMC Medical Research Methodology

**Open Access** 

#### RESEARCH



#### Seek COVER: using a disease proxy to rapidly develop and validate a personalized risk calculator for COVID-19 outcomes in an international network

Ross D. Williams<sup>1+</sup>, Aniek F. Markus<sup>1+</sup>, Cynthia Yang<sup>1</sup>, Talita Duarte-Salles<sup>2</sup>, Scott L. DuVall<sup>3</sup>, Thomas Falconer<sup>4</sup>, Jitendra Jonnagaddala<sup>5</sup>, Chungsoo Kim<sup>6</sup>, Yeunsook Rho<sup>7</sup>, Andrew E. Williams<sup>8</sup>, Amanda Alberga Machado<sup>9</sup>, Min Ho An<sup>10</sup>, María Aragón<sup>2</sup>, Carlos Areia<sup>11</sup>, Edward Burn<sup>2,12</sup>, Young Hwa Choi<sup>13</sup>, Iannis Drakos<sup>14</sup>, Maria Tereza Fernandes Abrahão<sup>15</sup>, Sergio Fernández-Bertolín<sup>2</sup>, George Hripcsak<sup>4</sup>, Benjamin Skov Kaas-Hansen<sup>16,17</sup>, Prasanna L. Kandukuri<sup>18</sup>, Jan A. Kors<sup>1</sup>, Kristin Kostka<sup>19</sup>, Siaw-Teng Liaw<sup>5</sup>, Kristine E. Lynch<sup>3</sup>, Gerardo Machnicki<sup>20</sup>, Michael E. Matheny<sup>21,22</sup>, Daniel Morales<sup>23</sup>, Fredrik Nyberg<sup>24</sup>, Rae Woong Park<sup>25</sup>, Albert Prats-Uribe<sup>12</sup>, Nicole Pratt<sup>26</sup>, Gowtham Rao<sup>27</sup>, Christian G. Reich<sup>19</sup>, Marcela Rivera<sup>28</sup>, Tom Seinen<sup>1</sup>, Azza Shoaibi<sup>27</sup>, Matthew E. Spotnitz<sup>4</sup>, Ewout W. Steyerberg<sup>29,30</sup>, Marc A. Suchard<sup>31</sup>, Seng Chan You<sup>25</sup>, Lin Zhang<sup>32,33</sup>, Lili Zhou<sup>18</sup>, Patrick B. Ryan<sup>27</sup>, Daniel Prieto-Alhambra<sup>12</sup>, Jenna M. Reps<sup>27+</sup> and Peter R. Rijnbeek<sup>1\*†</sup>

Williams, R.D., Markus, A.F., Yang, C. et al. Seek COVER: using a disease proxy to rapidly develop and validate a personalized risk calculator for COVID-19 outcomes in an international network. BMC Med Res Methodol 22, 35 (2022). https://doi.org/10.1186/s12874-022-01505-z



# Covid validation over time - motivation

- validate the model every x months
  - Depends on outcome count how frequently we can validate
- •How is performance affected by different events
  - $\odot$  Start of vaccinations
  - $\circ$  Different strains
- How do strategies such as using a disease proxy or waiting for enough data compare in performance down the line
- How is this affected by different model updating strategies



# Covid validation over time

• The study repo:

o https://github.com/ohdsi-studies/PandemicPrediction

- Are in the study design phase
  - If you want to get involved right away please be in touch:
  - <u>e.fridgeirsson@erasmusmc.nl</u> or study repo issue tracker
- Want to run as a network study
  - $\odot$  Will advertise that later and reach out to original data partners



### **Benchmark tasks**

### Why?

It is important to have a consistent set of prediction tasks and metrics to enable fair comparison of methods

### **Requirements:**

- Must be clinically useful
- -Must be diverse (topic, size, ...)
- -Must be feasible in observational data





# Benchmarks – What we did:

### We crowd sourced prediction tasks:

- We asked researchers in OHDSI workgroups that are clinical to provide us prediction tasks they would find useful.
- We asked OHDSI EU symposium prediction workgroup attendees to suggest prediction tasks they would find useful.
- We identified existing models that have been published

https://ohdsi.github.io/PatientLevelPrediction/articles/BenchmarkTasks.html

We are currently creating the phenotypes for each task and creating an R package that will create the datasets for the benchmark tasks.



### Benchmarks – Next steps

#### **Next Steps:**

- We want to evaluate the performance of standard models across a network of databases for the benchmark tasks
- We will write a journal paper (everyone who contributed to the tasks will be a coauthor)



#### **Importance:**

Now methods research can use these clinically meaningful benchmark tasks











# Join the OHDSI prediction journey!

### Thank you for listening!

We hope to see some new faces in our next monthly call.

Email: jreps@its.jnj.com

