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Least absolute shrinkage and selection operator (LASSO) is a heavily used penalized
regression model for large observational health data

+ Performs regularization and feature selection at the same time
While it has strong predictive capabilities it has some weaknesses
+ LASSO selects one feature from the group as a representative
+ ltis not a stable feature selector
There have been developed modelling methods in the literature to deal with these

+ Correlations: ElasticNet can do group selection
+ Feature Selection stability: Adaptive regularization methods

Gap: No one has compared these on large observational health data or during external
validation
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* LASSO and ElasticNet lead in AUC performance
LASSO with smaller model sizes

« LO methods, BAR and IHT lead in internal calibration

+ LO methods give by far the smallest models with median sizes < 20 coefficients.
Data driven parsimonious models

» Broken adaptive ridge is 2.5 percentage points AUC worse on average than LASSO during
internal validation

With ~8% of the coefficients LASSO has
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