COMPARING PENALIZATION METHODS FOR LINEAR MODELS ON LARGE OBSERVATIONAL HEALTH DATA

Egill Axfjord Fridgeirsson Postdoctoral researcher Erasmus University Medical Center Rotterdam

Erasmus MC University Medical Center Rotterdam

Motivation

- Least absolute shrinkage and selection operator (LASSO) is a heavily used penalized regression model for large observational health data
 - Performs regularization and feature selection at the same time
- While it has strong predictive capabilities it has some weaknesses
 - LASSO selects one feature from the group as a representative
 - It is not a stable feature selector
- There have been developed modelling methods in the literature to deal with these
 - Correlations: ElasticNet can do group selection
 - Feature Selection stability: Adaptive regularization methods
- Gap: No one has compared these on large observational health data or during external validation

Prediction problem

Critical difference diagram discrimination (AUC)

Critical difference diagram discrimination (ECE)

Discussion

- LASSO and ElasticNet lead in AUC performance
 - LASSO with smaller model sizes
- L0 methods, BAR and IHT lead in internal calibration
- L0 methods give by far the smallest models with median sizes < 20 coefficients.
 - Data driven parsimonious models
- Broken adaptive ridge is 2.5 percentage points AUC worse on average than LASSO during internal validation
 - With ~8% of the coefficients LASSO has

Thanks to my co-authors!

Ross Williams Peter Rijnbeek Marc Suchard Jenna Reps

Scan QR to read paper