Applying Machine Learning in Distributed Networks to Support Activities for Post-Market Surveillance of Medical Products: Opportunities, Challenges, and Considerations

Jenna Wong, PhD Assistant Professor, Harvard Medical School Department of Population of Medicine, Harvard Pilgrim Health Care Institute

CBER BEST Seminar Series – June 26, 2024

COI Disclosure Information Jenna Wong

- Salary support from: FDA-funded Sentinel Innovation Center activities
- All views discussed in this presentation reflect my own perspectives.

Collection

Role of Artificial Intelligence and Machine Learning in Pharmacovigilance

Drug Safety (2022) 45:493-510 https://doi.org/10.1007/s40264-022-01158-3

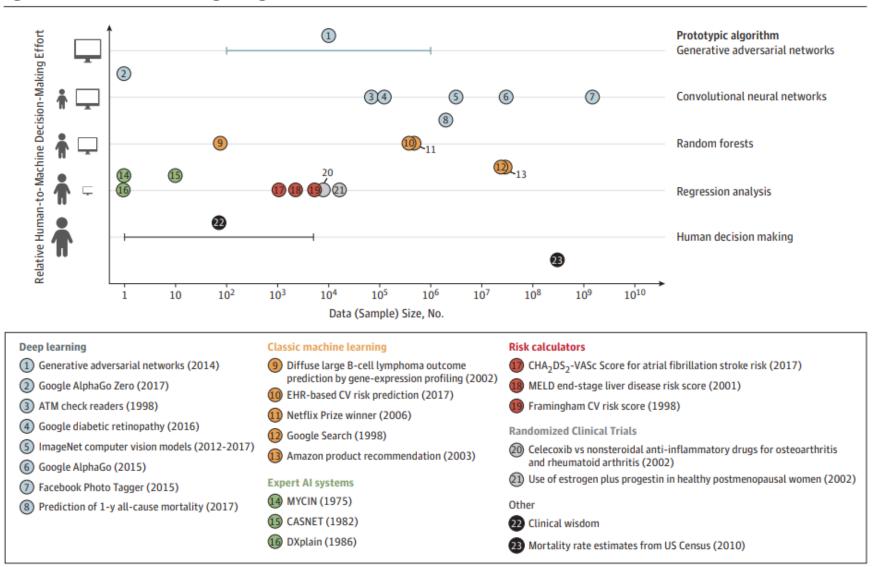
REVIEW ARTICLE

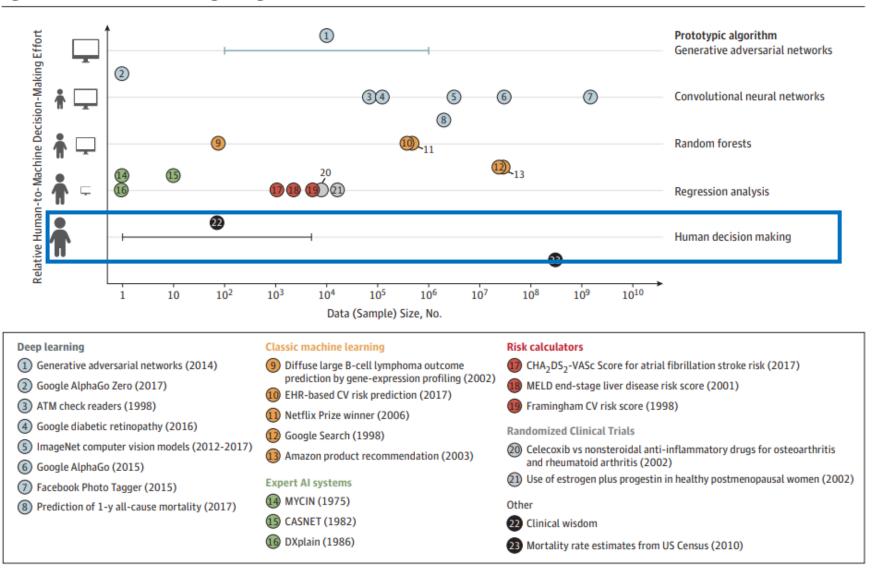
Applying Machine Learning in Distributed Data Networks for Pharmacoepidemiologic and Pharmacovigilance Studies: Opportunities, Challenges, and Considerations

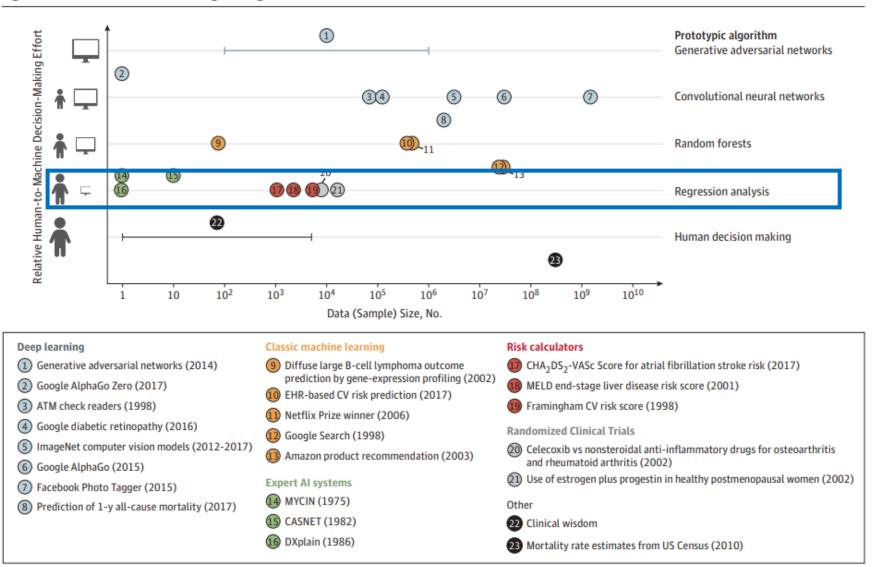
Jenna Wong¹ · Daniel Prieto-Alhambra^{2,3} · Peter R. Rijnbeek³ · Rishi J. Desai⁴ · Jenna M. Reps⁵ · Sengwee Toh¹

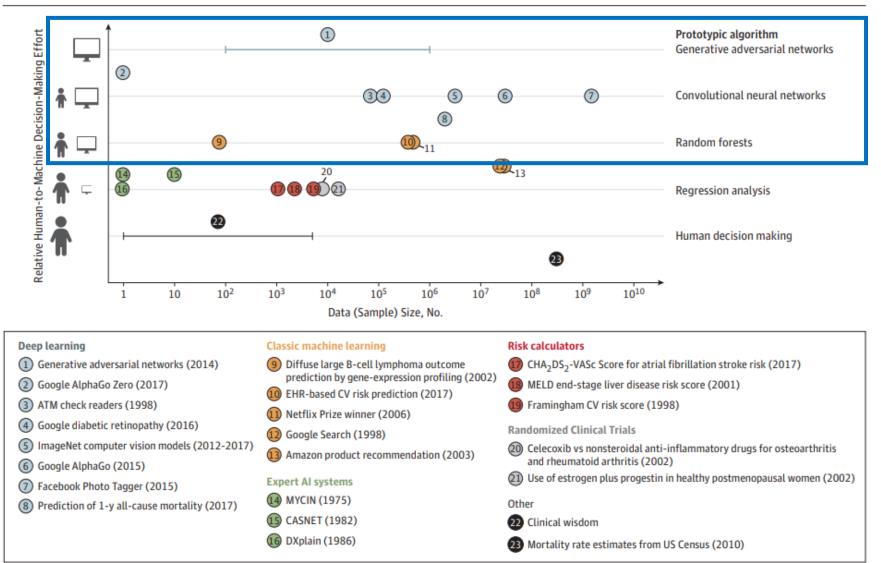
Overview

- 1. Definitions
- 2. Key activities of distributed data networks
- 3. Practical aspects of distributed data networks
- 4. Four scenarios
- 5. Additional considerations and conclusions

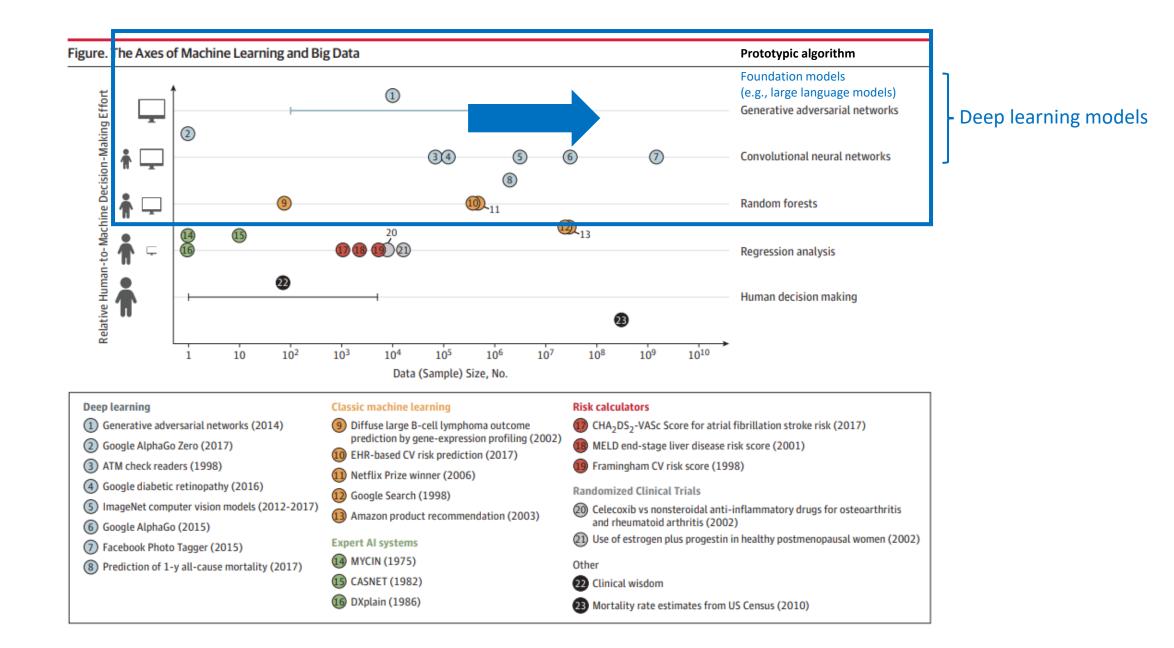








Pre-ChatGPT era Beam AL, Kohane IS. JAMA 2018; B19(13):1317-1318.

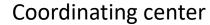


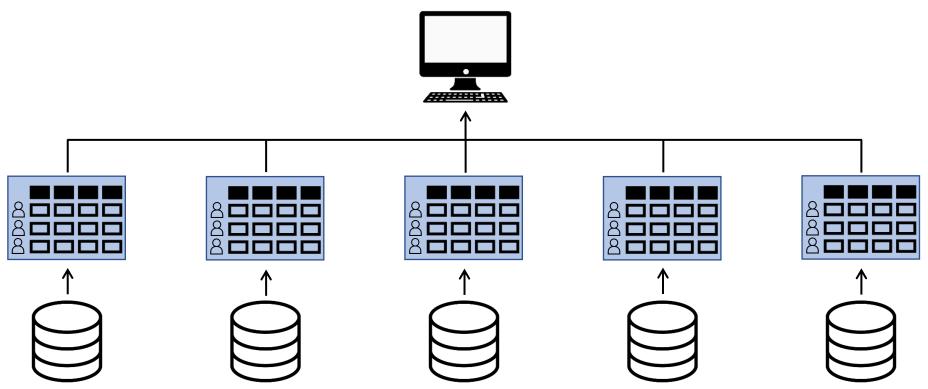
Modified from Beam AL, Kohane IS. JAMA. 2018;319(13):1317-1318.

Multi-database studies

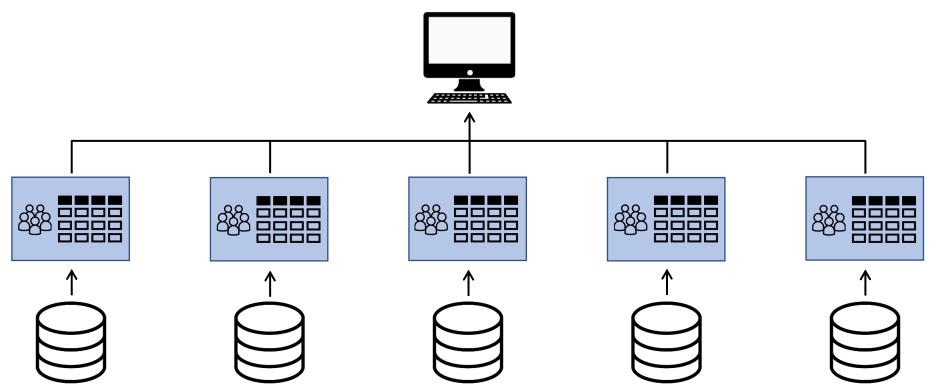
- Larger and more diverse populations
 - More precise and generalizable findings
 - Greater capture of rare exposures and outcomes
 - Better suited to investigate heterogenous treatment effects
 - More data for machine learning algorithms

Distributed data networks (DDNs)



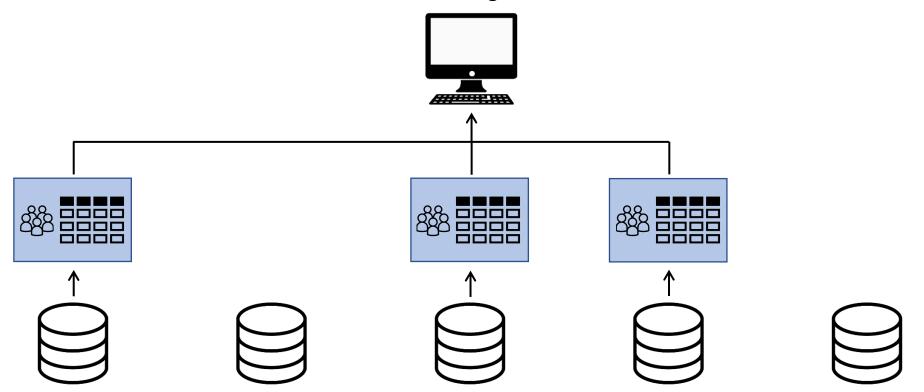


Distributed data networks (DDNs)



Distributed data networks (DDNs)

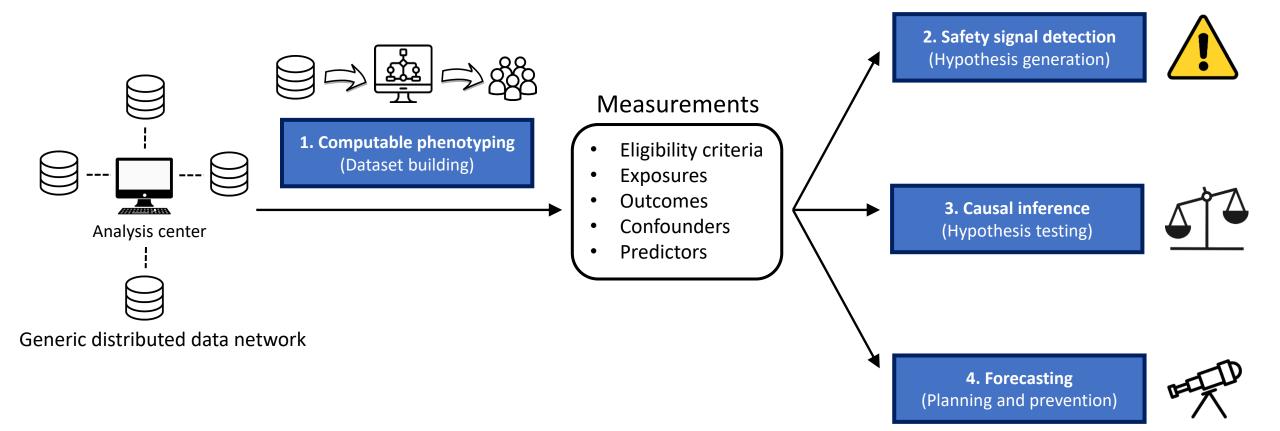
Coordinating center



Examples of DDNs that assess the real-world effectiveness and safety of marketed medical products

Overview

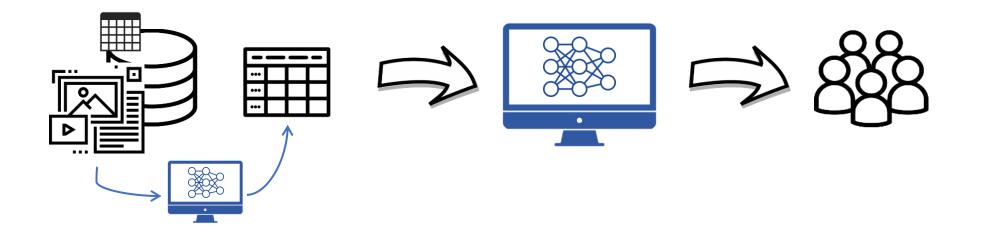
- 1. Definitions
- 2. Key activities of distributed data networks
- 3. Practical aspects of distributed data networks
- 4. Four scenarios
- 5. Additional considerations and conclusions



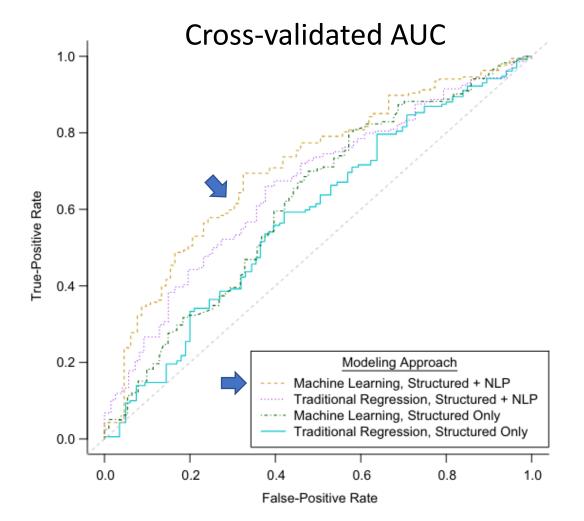
How can machine learning algorithms enhance these activities?

Computable phenotyping

- Phenotype definition: select inputs and learn how to map inputs to phenotype status
- Information extraction: extract candidate inputs from unstructured data (e.g., text or images)



Identifying anaphylaxis events from EHR data



Carrell et al. Am J Epidemiol. 2023;192(2):283

Safety signal detection (SSD)

• Disproportionality analysis

- Bayesian Confidence Propagation Neural Network (BCPNN) to calculate the Information Component¹
- Traditional epidemiological designs
 - General propensity scores to reduce confounding

Other innovative designs

- E.g., training a random forest to identify drug-outcome pairs that are adverse drug reactions using features reflecting Bradford Hill causality considerations²
- Information extraction
 - Extract mentions of adverse drug events from clinical text

Methods for SSD using routinely collected healthcare data

Method	Number of papers using the design ^a
Disproportionality analysis	
PRR	9 (17.3%)
ROR	8 (15.4%)
BCPNN	9 (17.3%)
GPS/MGPS	6 (11.5%)
LGPS/LEOPARD	12 (23.1%)
Other	8 (15.4%)
Subtotal	52 (100.0%)
Traditional epidemiological designs	
Self-controlled case series	15 (34.1%)
Self-controlled cohort	5 (11.4%)
New-user cohort	5 (11.4%)
Case-control	13 (29.5%)
Case-crossover	3 (6.8%)
Case-population	3 (6.8%)
Subtotal	44 (100.0%)
Temporal association	
Temporal pattern discovery	10 (50.0%)
MUTARA/HUNT	6 (30.0%)
Fuzzy-based logic Subtotal	4 (20.0%) 20 (100.0%)
Sequence symmetry analysis	6 (100.0%)
Sequential testing	
MaxSPRT	4 (66.7%)
CSSP	2 (33.3%)
Subtotal	6 (100.0%)
Tree-based scan statistic	9 (100.0%)
Other designs including machine learning	13 (100.0%)
Lab results	9 (100.0%)
Prescription only methods	5 (100.0%)

Coste et al. Pharmacoepidemiol Drug Saf. 2023;32(1):28

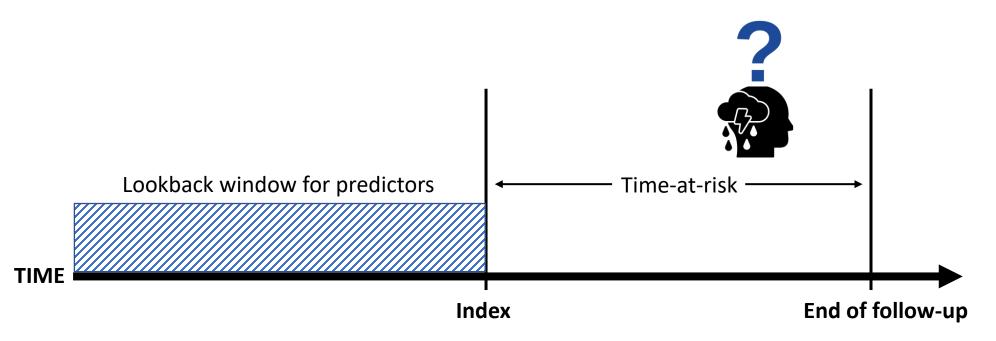
Causal inference

High-dimensional confounding adjustment

- Estimate "nuisance functions" (e.g., propensity score model and outcome model in targeted maximum likelihood estimation)
- Prioritize or reduce dimensionality of covariates¹
- Information extraction
 - Extract candidate covariates from unstructured data
- Counterfactual prediction
 - Predict potential outcomes for individuals under different treatments²

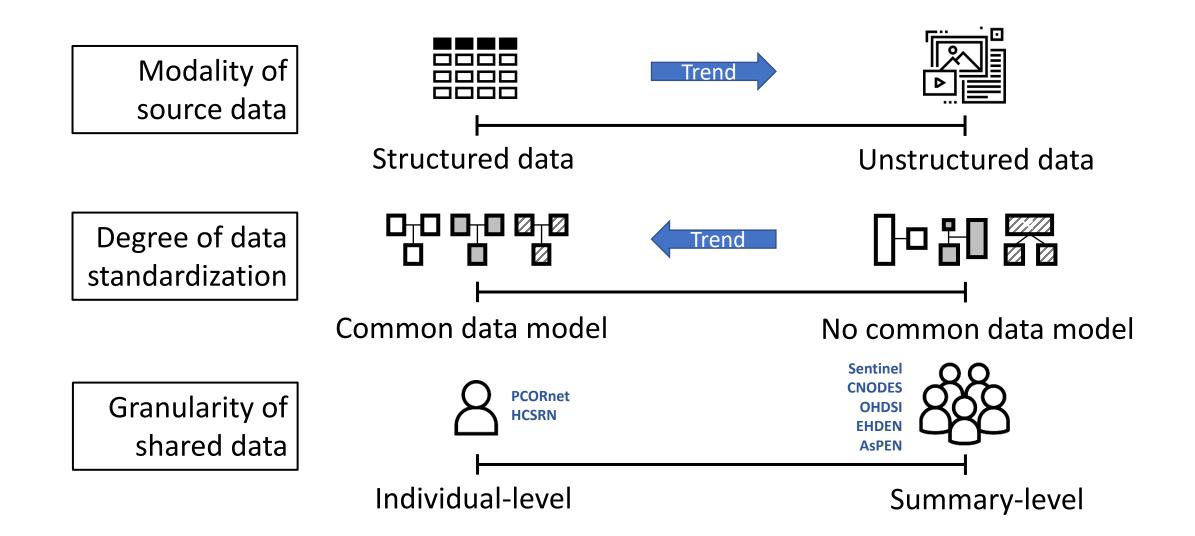
Forecasting

- **Prognostic algorithm:** select predictors and learn how to map predictors to prognosis
- Information extraction: extract candidate predictors from unstructured data (e.g., text or images)



Overview

- 1. Definitions
- 2. Key activities of distributed data networks
- 3. Practical aspects of distributed data networks
- 4. Four scenarios
- 5. Additional considerations and conclusions



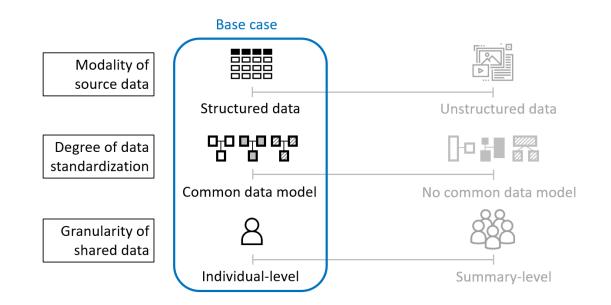
Overview

- 1. Definitions
- 2. Key activities of distributed data networks
- 3. Practical aspects of distributed data networks
- 4. Four scenarios
- 5. Additional considerations and conclusions

Scenario	Modality of source data		Granularity of shared data
1 – Base case	Structured data only	Common data model for all inputs	Individual-level data for all sites

Logistically straightforward to apply machine learning in DDNs

Scientifically valid?



Heterogeneity can exist in seemingly similar sites

Adults (≥50y) with any diabetes (2011-2020)

Select Patient Characteristics	KPWA (N=74475)	KPNW (N=64231)
Age, mean (SD)	62.8 (9.95)	62.8 (9.91)
Female	36631 (49%)	31461 (49%)
Insulin use	17184 (23%)	12207 (19%)
Elixhauser comorbidity score, mean (SD)	3.59 (2.34)	3.52 (2.28)
Race		
Unknown	20570 (28%)	4168 (6%)
American Indian or Alaska Native	1300 (2%)	925 (1%)
Asian	5776 (8%)	3661 (6%)
Black or African American	3328 (4%)	2495 (4%)
Native Hawaiian or Other Pacific Islander	773 (1%)	855 (1%)
White	42728 (57%)	52127 (81%)
Number of hospitalizations, mean (SD)	0.190 (0.60)	0.198 (0.62)

- KPNW: greater use of "unspecified" codes
- KPWA: greater use of specific codes

Source: Sentinel Innovation Center Methods Project (Shi et al., unpublished results) KPWA = Kaiser Permanente Washington; KPNW = Kaiser Permanente Northwest

ICD-10 codes related to cataract (phecode 366)

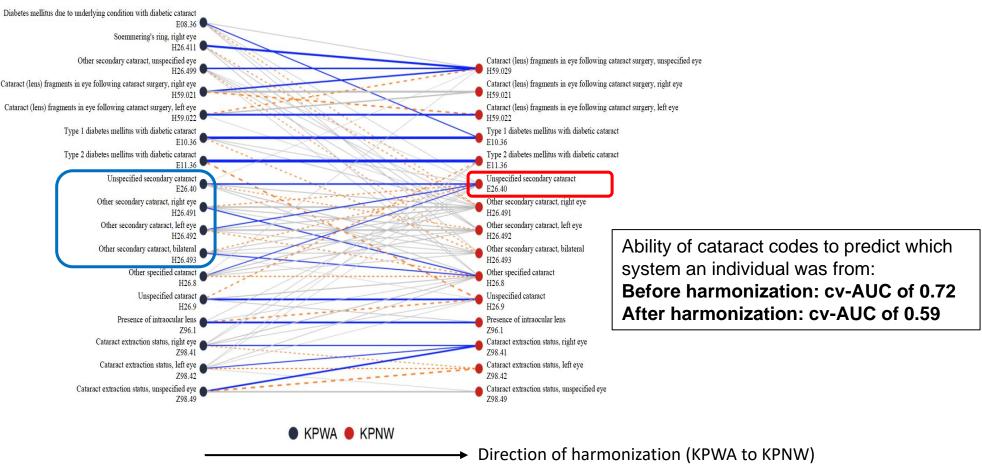
Code	Description		Frequency		Adjusted
		KPWA	KPNW	Ratio ^a	P-value ^b
	Any ICD-10 code related to cataract	75535	68658	1.03	
E08.36	Diabetes mellitus due to underlying condition with diabetic cataract	23	0	3.10	6.12x10^-03
E10.36	Type 1 diabetes mellitus with diabetic cataract	92	117	0.75	6.06x10^-02
E11.36	Type 2 diabetes mellitus with diabetic cataract	3065	2996	0.96	5.88x10^-01
H26.40	Unspecified secondary cataract	561	1144	0.46	1.62x10^-39
H26.411	Soemmering's ring, right eye	11	1	1.79	1.26x10^-01
H26.491	Other secondary cataract, right eye	3044	771	3.67	<10^-100
H26.492	Other secondary cataract, left eye	3129	741	3.93	<10^-100
H26.493	Other secondary cataract, bilateral	3952	636	5.76	<10^-100
H26.499	Other secondary cataract, unspecified eye	70	0	7.51	1.55x10^-14
H26.8	Other specified cataract	526	1323	0.38	5.22x10^-27
H26.9	Unspecified cataract	16704	15786	0.99	8.53x10^-01
H59.021	Cataract (lens) fragments in eye following cataract surgery, right eye	47	14	2.23	1.31x10^-01
H59.022	Cataract (lens) fragments in eye following cataract surgery, left eye	78	10	4.13	1.03x10^-02
H59.029	Cataract (lens) fragments in eye following cataract surgery, unspecified eye	1	72	0.13	1.15x10^-06
Z96.1	Presence of intraocular lens	35888	44526	0.76	1.31x10^-79
Z98.41	Cataract extraction status, right eye	3950	199	17.79	<10^-100
Z98.42	Cataract extraction status, left eye	3723	195	17.10	<10^-100
Z98.49	Cataract extraction status, unspecified eye	622	112	4.87	1.15x10^-33

^aFrequency ratio defined as (*frequency in KPWA* + 10)/*patient yrs in KPWA* divided by (*frequency in KPNW* + 10)/*patient yrs in KPNW*; where ratio>1 indicates stronger code endorsement at KPWA and ratio<1 indicates stronger code endorsement at KPNW. ^bP-value from t-test, adjusted for person-time and baseline patient characteristics (age, sex, insulin, and Elixhauser index)

Approaches to reduce heterogeneity

- Approach 1: Fit site-specific models
- Approach 2: "Harmonize" the input data

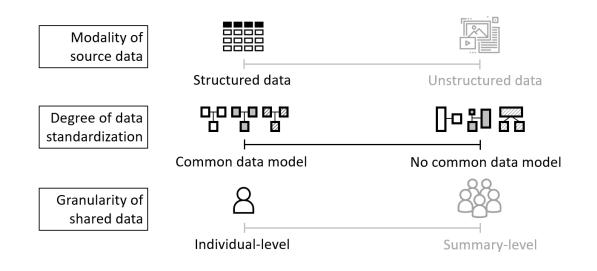
Unsupervised learning to reduce heterogeneity



Blue lines = top mapping (code at KPNW with largest similarity) Orange dashed lines = 2nd top mapping (code at KPNW with 2nd largest similarity)

Source: Sentinel Innovation Center Methods Project (Shi et al., unpublished results) KPWA = Kaiser Permanente Washington; KPNW = Kaiser Permanente Northwest

Scenario	Modality of source data		Granularity of shared data
1 – Base case	Structured data only	Common data model for all inputs	Individual-level data for all sites
2 – Less standardized data available	Structured data only	No common data model for some inputs	Individual-level data for all sites



Scenario	Modality of source data	Degree of data standardization	Granularity of shared data
1 – Base case	Structured data only	Common data model for all inputs	Individual-level data for all sites
2 – Less standardized data available	Structured data only	No common data model for some inputs	Individual-level data for all sites

Creates challenges for feature engineering

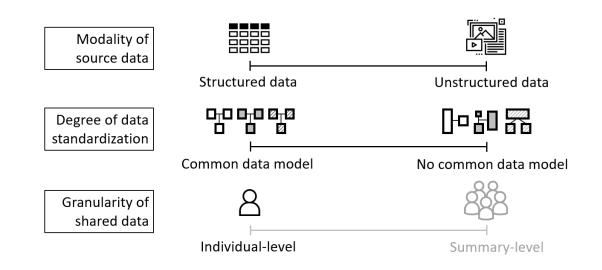


Table 4 Reasons for determinations of ARIA insufficiency

Unavailable structured and unstructured clinical data in the Sentinel Common Data Model were among the top reasons new drug safety concerns could not be evaluated in the FDA's Active Risk Identification and Analysis (ARIA) system.

Reasons for insufficiency	Number of determinations	Example	Direction of future development
Insufficient supplemental structured clinical data	89	Lack of laboratory, imaging, or vital signs data	Addressable with the addition of EHR data elements into ARIA ^{35,36}
Inability of ARIA tools to perform required analysis	82	Insufficient signal identification tool	ARIA has integrated signal identification abilities (Figure 1) ¹⁶⁻¹⁸
Study requires data elements captured in unstructured clinical data, such as clinical notes	73	Lack of radiology or pathology findings in notes	Addressable with development of feature engineering capabilities to extract and structure these data ³⁷
Absence of validated code algorithm	72	No gold-standard chart review was performed for outcome of interest	Sentinel has performed several gold standard chart validations ^{38–42} but these require substantial resources. Efforts underway to investigate rapid silver standard reviews.
Identification of clinical concepts with available code algorithms/terminologies is not possible or inadequate	60	Codes do not exist for concept or validated performance characteristics are inadequate	Potentially addressable with added EHR elements but if outcome is not well-defined or new (e.g., long COVID), there may be substantial hurdles to identification
Inadequate sample size	57	Low uptake of drug	Non-actionable as ARIA is the largest system of its kind
Requires linkage to additional data source that is unavailable	52	Inability to ascertain cause of death	Additional linkages are possible with significant financial resources
Insufficient observation time available	44	Inability to follow patients across healthcare plans or systems	Actionable with substantial further research and development and resolution of data governance issues ⁴³
Insufficient mother-infant linkage	24	Lack of ability to connect mothers and infants	Resolved with 2018 integration of Mother- Infant Linkage table ¹⁵
Insufficient inpatient data	18	Inability to access granular inpatient pharmacy information	Resolved with partnerships with inpatient healthcare systems ¹⁰
Inability to identify over-the-counter medication use	8	Over-the-counter medication use not captured	Inherent limitation of both claims and EHR data
Insufficient race capture of information on race	3	Race is not well-captured	FDA is working with Data Partners to understand approaches for better capture of this data
Insufficient representation of the population of interest	1	Limited generalizability based on commercial claims data	Sentinel added Medicare data in 2018 and Medicaid in 2022

Maro et al. Clin Pharmacol Ther. 2023;114(4):815

ARIA, Active Risk Identification and Analysis; COVID, coronavirus disease; EHR, electronic health record; FDA, US Food and Drug Administration.

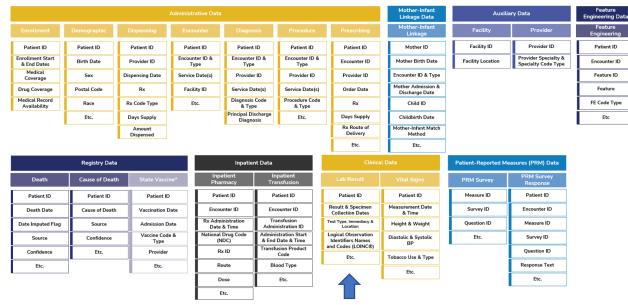
When desired information is outside the CDM

• Approach 1: Standardize the unstandardized information

- Invest time and resources upfront
- Some considerations:
 - How easily can the information be added?
 - How frequently will the information be used?
 - How urgently is the information required?

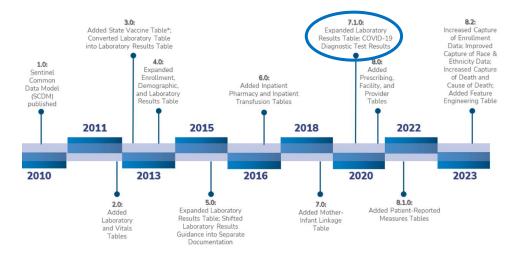
The Sentinel Common Data Model over time

Latest version (SCDM v8.2.0)



https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model

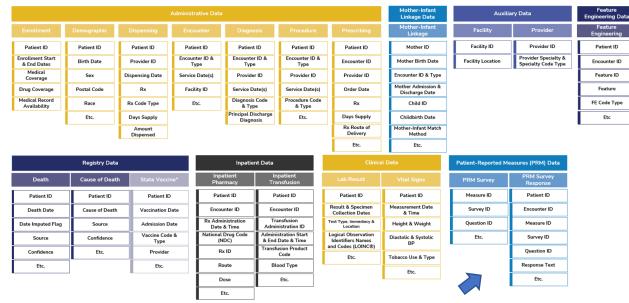
*The State Vaccine table has not been in use since SCDM v6.0.



https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model#enhancements-to-sentinel-common-data-model

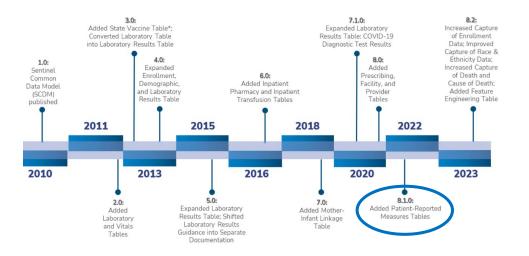
The Sentinel Common Data Model over time

Latest version (SCDM v8.2.0)



https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model

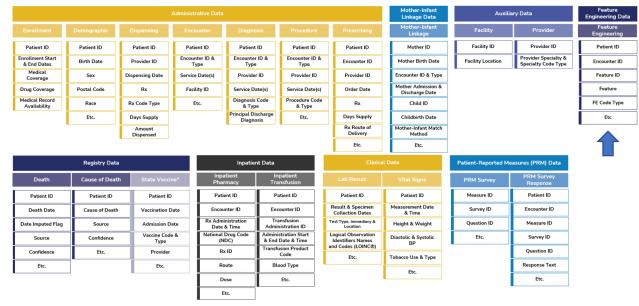
*The State Vaccine table has not been in use since SCDM v6.0.



https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model#enhancements-to-sentinel-common-data-model

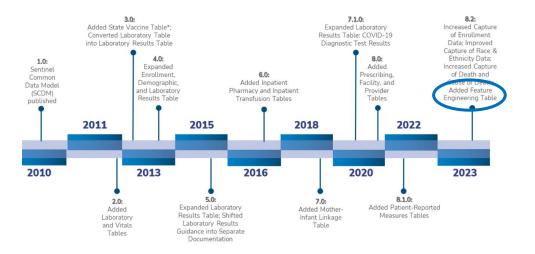
The Sentinel Common Data Model over time

Latest version (SCDM v8.2.0)



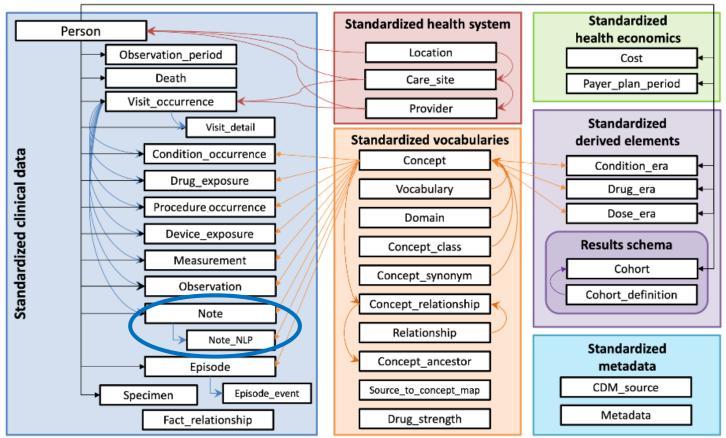
https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model

*The State Vaccine table has not been in use since SCDM v6.0.



https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model#enhancements-to-sentinel-common-data-model

Observational Medical Outcomes Partnership (OMOP) Common Data Model



Latest version (OMOP CDM v5.4)

https://ohdsi.github.io/CommonDataModel/

When desired information is outside the CDM

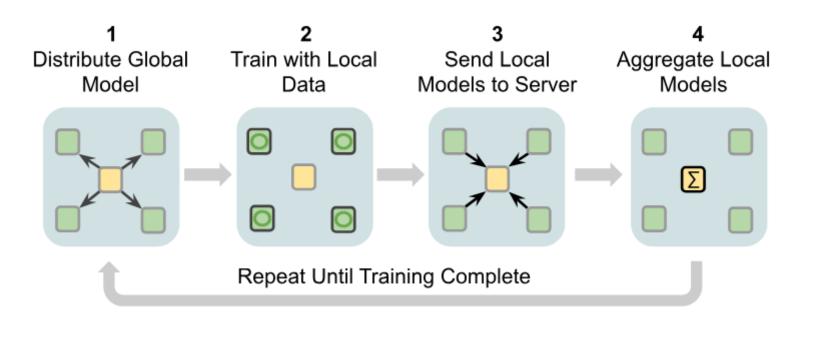
• Approach 2: Do a site-specific analysis (using a common protocol)

- May be especially preferred when:
 - Desired information captured only at some sites
 - Added value of desired information for the model is uncertain

Scenario	Modality of source data	Degree of data standardization	Granularity of shared data
1 – Base case	Structured data only	Common data model for all inputs	Individual-level data for all sites
2 – Less standardized data available	Structured data only	No common data model for some inputs	Individual-level data for all sites
3 – More complex data modalities used	Structured and unstructured data	No common data model for some inputs	Individual-level data for all sites
4 – Less granular data shared	Structured data only	Common data model for all inputs	Summary-level data for all sites

Training models with only summary-level data

• Approach 1: Collaboratively train a global model (federated learning)



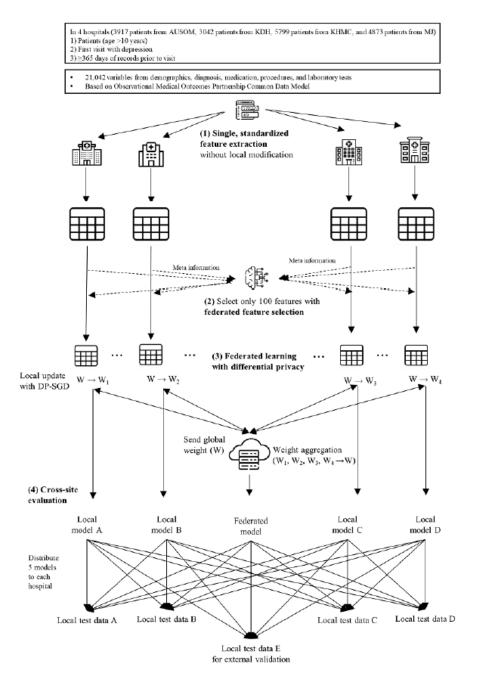
Key

- Aggregation Server
- Training Node
- Σ Model Aggregation
- Weight/Gradient Exchange

Training models with only summary-level data

• Approach 1: Collaboratively train a global model (federated learning)

Advantages	Disadvantages
 Train more robust and generalizable models by using data from multiple sites 	 Privacy leakage concerns Coordination and implementation challenges (e.g., hardware and infrastructure requirements, communication costs) Global model may not converge or perform well if data across sites are too heterogeneous



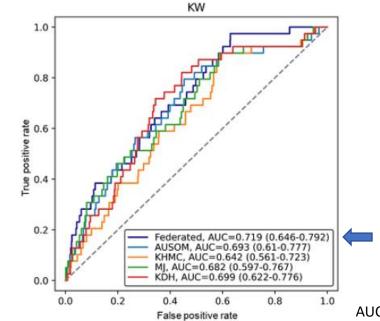
Lee et al. J Med Internet Res. 2023 Jul 20;25:e46165.

AUC of federated vs local models in test sets (Cross-site evaluation)

Test set

		AUSOM	кнмс	мл	KDH	Mean
	Federated	0.819 (0.74-0.897)	0.731 (0.584-0.931)	0.707 (0.618-0.794)	0.649 (0.497-0.801)	0.726
	AUSOM	0.816 (0.742-0.89)	0.65 (0.447-0.853)	0.579 (0.472-0.686)	0.524 (0.355-0.692)	0.642
Local	кнмс	0.663 (0.473-0.854)	0.736 (0.55-0.923)	0.641 (0.535-0.747)	0.606 (0.452-0.761)	0.662
models	MJ	0.766 (0.656-0.875)	0.732 (0.571-0.893)	0.715 (0.634-0.795)	0.614 (0.421-0.807)	0.707
	KDH	0.811 (0.685-0.937)	0.654 (0.453-0.855)	0.598 (0.487-0.709)	0.705 (0.497-0.912)	0.692

AUC of federated and local models in an external database



AUC = area under the curve

Training models with only summary-level data

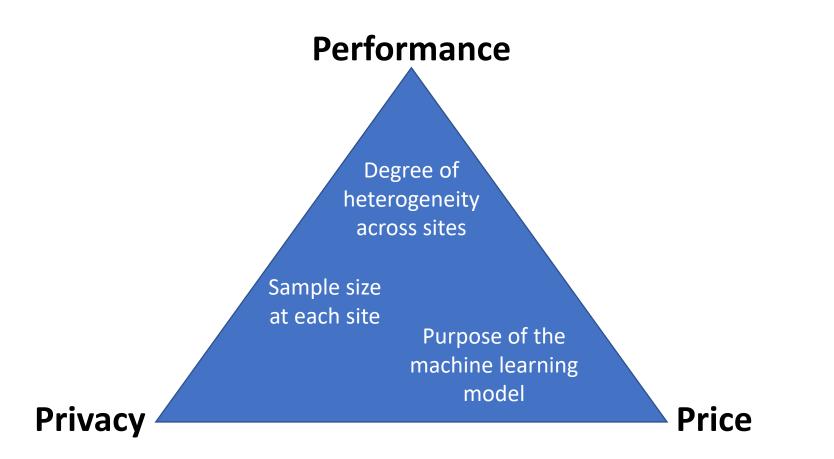
• Approach 2: Train a local model independently at each site

Advantages	Disadvantages
 Can be easily externally validated in other sites¹ Do not have to use the same inputs as other sites Transportability of local models can be improved using simpler federated learning approaches² 	 Does not harness the full potential of the network to train more robust and generalizable models

Overview

- 1. Definitions
- 2. Key activities of distributed data networks
- 3. Practical aspects of distributed data networks
- 4. Four scenarios
- 5. Additional considerations and conclusions

Choice of approach is a balancing act



Other benefits of machine learning in DDNs

Issue	Single database	Distributed data network
Generalizability	External validation of models is rare and slow	External validation of models can be done more quickly and easily
Transparency	Less impetus to document finer-grain details	High transparency required to enable data partners to replicate process
Interpretability	Less impetus to interpret and explain model outputs	Unusual or discrepant results across data partners require ability to interpret and explain model outputs

Conclusions

- Many opportunities exist for machine learning to enhance the activities of DDNs for post-market medical product surveillance.
- The diverse and siloed storage of data in DDNs create **unique challenges** for applying machine learning.
- Various approaches can be considered to address these challenges.
- Rapid rise of **LLMs and generative AI** may accelerate the ability of DDNs to address some challenges (e.g., incorporate information from unstructured data into the CDM), but may also raise new challenges and considerations.
- Machine learning will continue to play an important role in **advancing the capabilities of DDNs** for post-market surveillance in the years to come.

- Many opportunities exist for machine learning to enhance the activities of DDNs for post-market medical product surveillance.
- The diverse and siloed storage of data in DDNs create **unique challenges** for applying machine learning.
- Various approaches can be considered to address these challenges.
- Rapid rise of LLMs and generative AI may accelerate the ability of DDNs to address some challenges (e.g., incorporate information from unstructured data into the CDM), but may also raise new challenges and considerations.
- Machine learning will continue to play an important role in advancing the capabilities of DDNs for postmarket surveillance in the years to come.

Questions?

jenna_wong@hphci.harvard.edu

DEPARTMENT OF POPULATION MEDICINE Harvard Pilgrim Health Care Institute