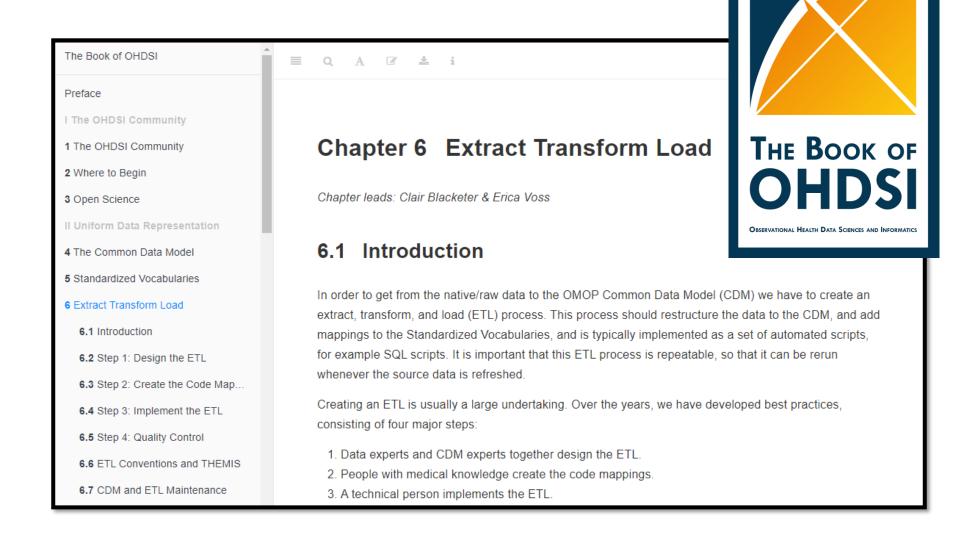


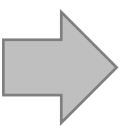
OMOP Conversion Process

ETL


- Extract Transform Load
- In order to get from our native/raw data into the OMOP CDM we need to design and develop and ETL process

Goal in ETLing is to standardize the format and terminology

ETL Process



ETL Process

ETL Documentation

Data experts and CDM experts together design the ETL

People with medical knowledge create the code mappings

All are involved in quality control

A technical person implements the ETL

OHDSI Tools

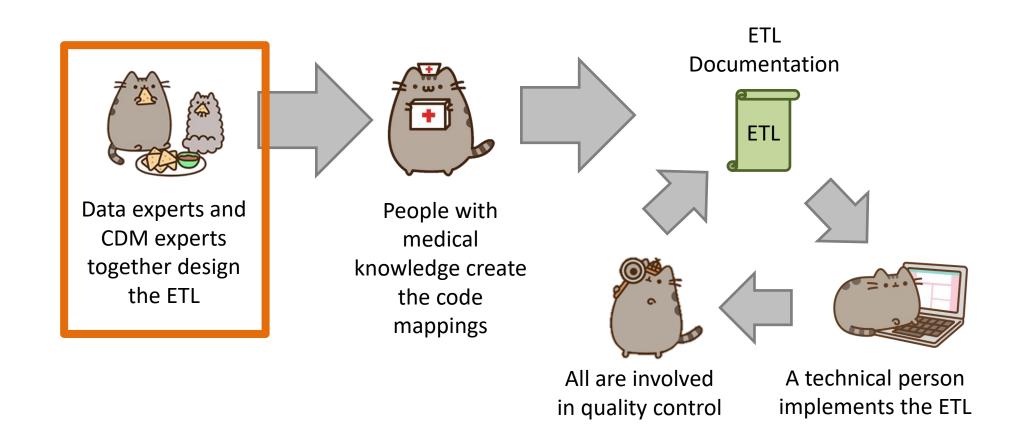
White Rabbit

Rabbit In a Hat

Usagi

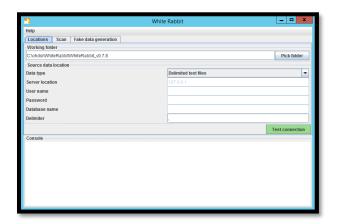
White Rabbit

ACHILLES


DQD

Rabbit In a Hat

Designing the ETL



White Rabbit

 White Rabbit scans source data & creates a csv report on the source data

- The scan can be used to:
 - Learn about your source data
 - Help design the ETL
 - Used by Rabbit In a Hat

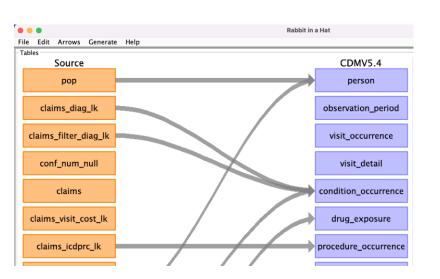
WR Output – ScanReport.xlsx

Table/Field Overview

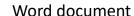
Table	Field	Description	Type	Max length	N rows
рор	der_sex		character	1	16374539
рор	der_yob		double pre	6	16374539
рор	pat_id		character	64	16374539
рор	pat_hash_id		character	16	16374539
рор	pmtx_flag		numeric	1	16374539
рор	anon_ims_pat_id		character	11	16374539
рор	pat_region		character	2	16374539
рор	pat_state		character	2	16374539
рор	pat_zip3		character	3	16374539
рор	grp_indv_cd		character	1	16374539
рор	mh_cd		character	1	16374539
рор	enr_rel		character	2	16374539
рор	temp_col1		character	0	16374539
рор	temp_col2		character	0	16374539
рор	load_row_id		bigint	9	16374539
claims_diag_lk	person_source_valu		character	64	2992046684
claims_diag_lk	event_start_date		date	10	2992046684
alaima diaa IIr	arrant and data		data	10	2002046604

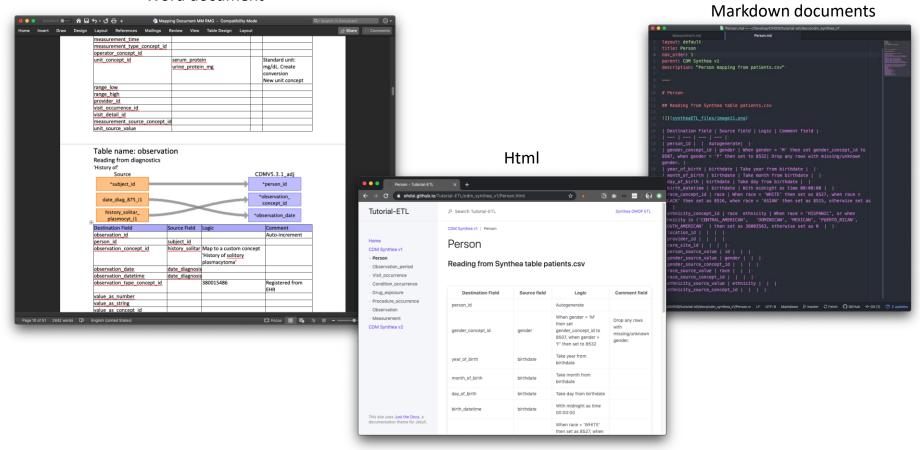
Value counts

	Α	В	С	D	
1	der_sex ▼	Frequency 🔻	der_yob ▼	Frequency 🔻	рŧ
2	F	50479	1991.0	2030	Li:
3	М	49514	1992.0	1970	
4	U	7	1990.0	1947	
5			1989.0	1908	
6			1988.0	1873	
7			1994.0	1872	
8			1995.0	1806	
9			1993.0	1805	
10			1996.0	1716	
11			1986.0	1676	
12			1987.0	1643	
13			1985.0	1633	
14			1983.0	1588	
15			1981.0	1581	
16			1984.0	1576	
17			1970.0	1555	
18			1980.0	1553	
4	•	рор	claims_diag_	lk clai	m

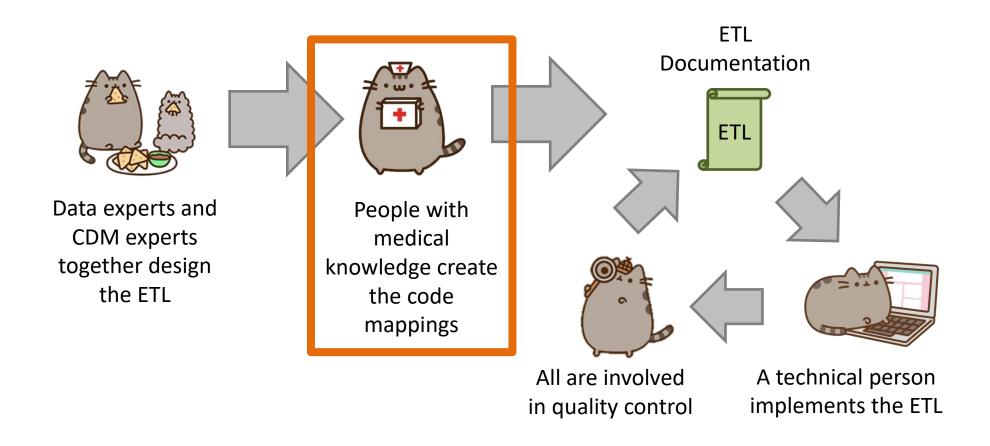

Rabbit in a Hat

 Read and display a White Rabbit scan document

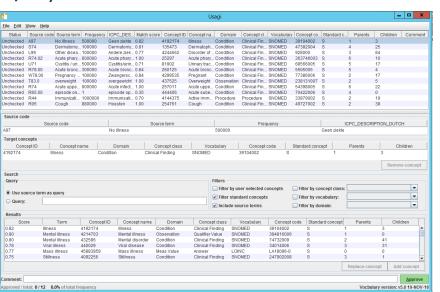

 Provides a graphical interface to allow a user to connect source data to CDM tables



RiaH - Output

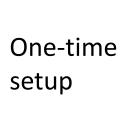


Vocabulary Mapping

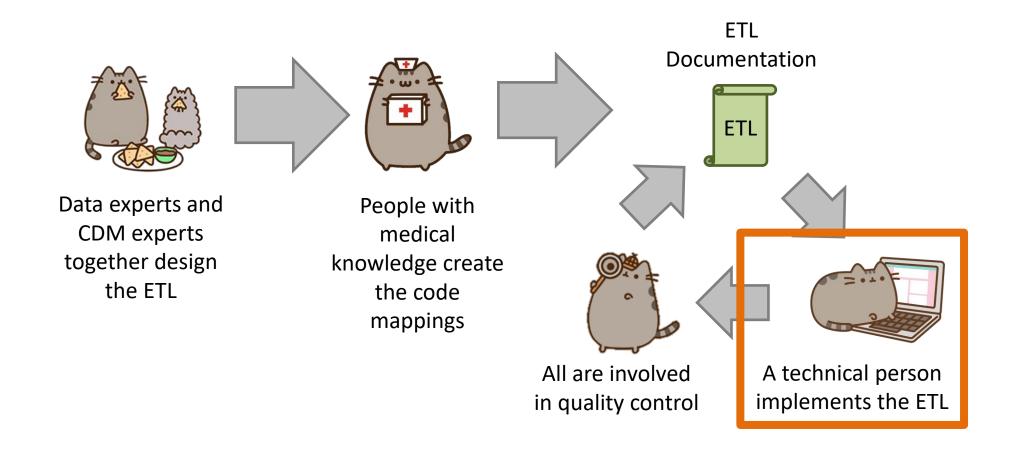


Usagi

- When the Vocabulary does not contain your source terms you will need to create a map to OMOP Vocabulary Concepts
- Usagi helps you to:
 - Find best matches, automatically and/or manually
 - Automatic matching based on text similarities (itf/df)
 - Create 'source to concept map'



Overview - Steps

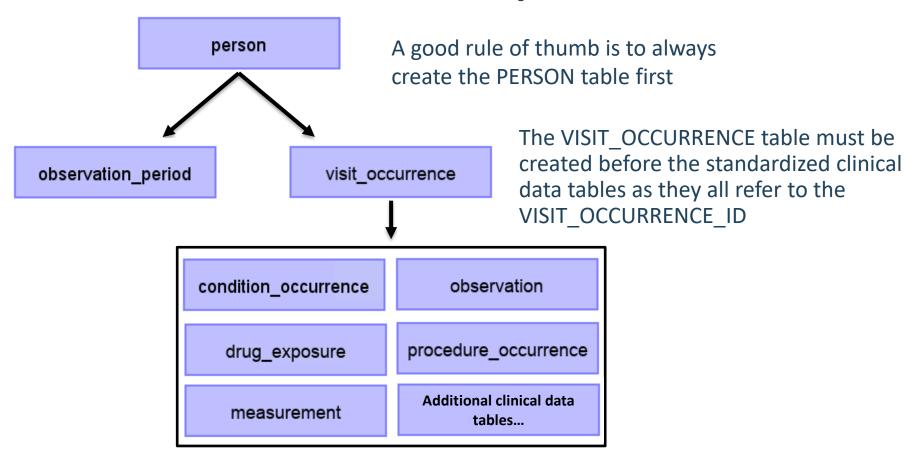


- 1. Get a copy of the Vocabulary from ATHENA
- 2. Download Usagi
- 3. Have Usagi build an index on the Vocabulary
- 4. Load your source codes and let Usagi process them
- 5. Review and update suggested mappings with someone who has medical knowledge
- 6. Export codes into the SOURCE_TO_CONCEPT_MAP

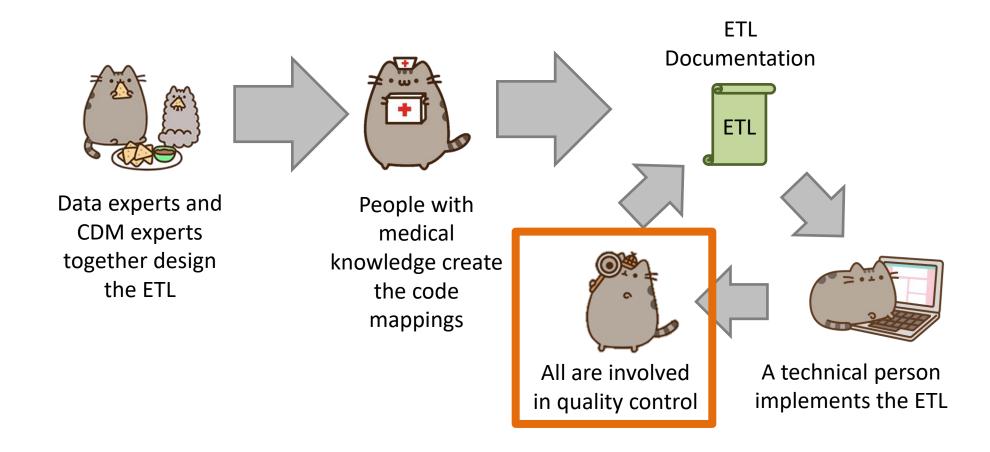
Implementing the ETL

ETL Implementation

There are multiple tools available to implement your ETL


Your choice will largely depend on the size and complexity of the ETL design. And the tools available to you.

ETL Implementation



General Flow of Implementation

Quality Control

Quality

What tools are available to check that the CDM logic was implemented correctly?

Rabbit-in-a-Hat Test Case Framework

Achilles

DataQualityDashboard (DQD)

Unit Test Cases

- Testing your CDM builder is important:
 - ETL is often complex, increasing the danger of making mistakes that go unnoticed
 - CDM can update
 - Source data structure/contents can change over time

 Rabbit-In-a-Hat can construct unit tests, or small pieces of code that can automatically check single aspects of the ETL design

Achilles

Achilles is a data characterization and quality tool available for download here:

https://github.com/OHDSI/Achilles

For an example of how it was run for some sample data, that R script is located here:

https://github.com/OHDSI/Tutorial-

ETL/blob/master/materials/Achilles/achillesRun.R

DataQualityDashboard (DQD)

 Runs a prespecified set of data quality checks and thresholds on the CDM

DATA QUALITY ASSESSMENT

SYNTHEA SYNTHETIC HEALTH DATABASE

Results generated at 2019-08-22 14:15:06 in 29 mins

	Verification			Validation			Total					
	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass
Plausibility	159	21	180	88%	283	0	283	100%	442	21	463	95%
Conformance	637	34	671	95%	104	0	104	100%	741	34	775	96%
Completeness	369	17	386	96%	5	10	15	33%	374	27	401	93%
Total	1165	72	1237	94%	392	10	402	98%	1557	82	1639	95%

Common ETL Issues

Non-standard Vocabulary

Codes mapped to OMOP vocabulary aren't mapped to a 'Standard'

Multiple Input on Records

Some records will contain multiple coding systems and text. A hierarchy must be selected to avoid duplicate records

Non-Clinical Events

Due to text options in EHR Data, many options are not clinical events (e.g. 'Tuesday' or 'XXYZ'). These records will be scrubbed to ensure quality of data converted to OMOP.

Multiple records for one concept mapping

Picking one of the multiple standard vocabulary mapping to create the OMOP CDM record instead of one record per mapping

Abnormal values

Unconventional values in data asset (i.e. Negative or 0 as value_as_number)

Incorrect logic -

Observation_Period

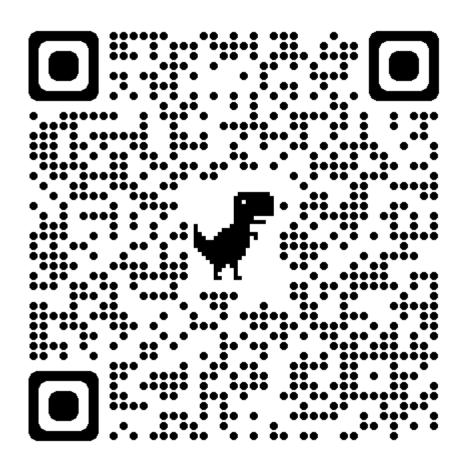
Observation_Period table populated incorrectly.
Observation period does not cover the entire period of time where events are recorded for a person

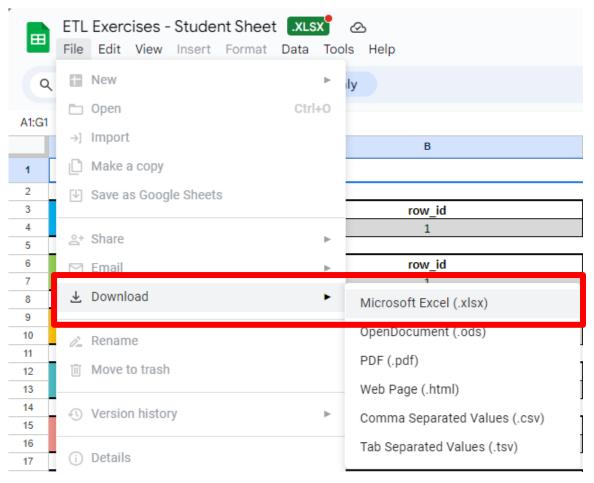
Wrong type_concept_id

Use of the wrong type_concept_id or misunderstanding the definition of this field

Missing CDM tables

OMOP CDM tables missing due to misunderstanding on how to populate the table.


Incorrect logic - Visit_Occurrence


Visit_Occurrence table populated incorrectly

Exercise Instructions

Download a copy of the exercises at:

Exercise Instructions

- Using the native data provided, map it to the OMOP CDM using the template provided in the *ETL Development_1000* sheet
- If you have spare time, do the same for the ETL Development_1005 and ETL Development 1010 sheets

Thank you!

Mui Van Zandt Gyeol Song mui.vanzandt@iqvia.com gyeol.song@iqvia.com