

Federated network studies within a country: the OHDSI UK experience

Prof Dani Prieto-Alhambra

Health Data Sciences Lead Botnar Research Centre, University of Oxford

Prof of Real World Evidence, Erasmus MC Deputy Director, DARWIN EU Coordination Centre

AGENDA

- Open science and federated analytics
- Standardised data -> Standardised analyses
- Impactful examples
- True impact: DARWIN EU and FAIRS UK

AGENDA

- Open science and federated analytics
- Standardised data -> Standardised analyses
- Impactful examples
- True impact: DARWIN EU and FAIRS UK

We MUST NOT do 'silo' Health Data Sci

Published observational study results

OPEN SCIENCE principles in Federated Analytics

- We need to declare a protocol
- We need to share ALL our code
- We need to share ALL our results

- Transparency is key to
 - Reproducibility
 - Interpretability
 - Trustworthiness

Here is the result!

Suchard M et al. Lancet 2020

Courtesy of M Schuemie

HOW WE GREW (in Europe) – The EHDEN journey

The OMOP common data model

- Patient-centric
 - Tabular
 - Extendable
- Built for analytics
- Relational design

(im)

THE EHDEN NETWORK OF OMOP-MAPPED DATA PARTNERS

Geographic spread of data partners. The shade of blue indicates the # of data partners in that country (darker = more)

Meantime, in the UK...

NHS

Secure Data Environments:

E	England	POPULATION 56.5m
EE	East of England	POPULATION 6.6m
EM	East Midlands	POPULATION 5.1m
GW	Great Western	POPULATION 5.2m
KMS	Kent, Medway & Sussex	POPULATION 3.8m
L	London	POPULATION 10.5m
NENC	North East and North Cumbria	POPULATION 3.2m
NW	North West	POPULATION 7.3m
TVS	Thames Valley & Surrey	POPULATION 3.9m
W	Wessex	POPULATION 2.8m
WM	West Midlands	POPULATION 6.2m
YH	Yorkshire & Humber	POPULATION 5.9m

Meantime, in the UK... (2)

Visit the Gateway Visit the Alliance Visit HDR UK Futures

Search

Q

About Advancing Health Research Access Health Data Helping with Health Data Study and Train News, Opinion and Events

Home | News

Opinion

NHS Research SDE Network agrees to adopt common data model

15 August 2023 | Author: Dr Chris Russell, Head of Delivery, Data for R&D at NHS England

Our healthcare system is complex and has evolved over time rather than developing in line with an agreed grand plan. Health data is no different and while the benefits from a more standardised approach to data are enormous, achieving this presents a significant challenge. Dr Chris Russell, Head of Delivery, Data for Research and Development at NHS England, discusses how adoption of a common data model can help.

Contact Dr Chris Russell @DrChrisRussell LinkedIn profile

Partners NHS England

AGENDA

- Open science and federated analytics
- Standardised data -> Standardised analyses
- Impactful examples
- True impact: DARWIN EU and FAIRS UK

From standardised data to standardised analytics

"What's the adherence to my drug in the data assets I own?"

From Data Standardization To Standardised Analytics

	1	1	1 1	
Spain	Ita	ly	NL	
	UK	зарап	mula	
I				
DK	Sweden	Estonia	Czech	

The challenge: TRUE scalability

PHASE I Establishment – 1st year	PHASE Establishmen year	II Pl at – 2nd Open	HASE III ration – 1st year	Operation 2nd year	Operation 3rd year
	Year 1	Year 2	Year 3	Year 4	Year 5
Phases	Phase I	Phase II	Phase III	Option 1	Option 2
Routine Repeated analysis	At least 1 study	-	30	60	60
Off the shelf studies	At least 2 studies	6 + 8	30	60	60
Complex Studies	1	4	12	24	24
Very Complex Studies	0	0	0	1	1

Hacking a hard problem: Scaling up

Off the shelf Fully STD

Complex Pre-specified (some bespoke)

Very complex Bespoke code

Catalogue of Standard Data Analyses

These are mainly characterisation questions that can be executed with a generic protocol. This includes disease epidemiology, for example the estimation of the prevalence, incidence of health outcomes in defined time periods and population groups, or drug utilization studies at the population or patient level.

• Patient-level characterisation

- Patient-level DUS analyses
- Population-level DUS analyses
- Population-level descriptive epidemiology

Complex

These are studies requiring development or customisation of specific study designs, protocols, analytics, phenotypes. This includes studies on the safety and effectiveness of medicines and vaccines.

- Prevalent user active comparator cohort studies
- New user active comparator cohort
- Self-controlled case risk interval
- Self-controlled case series
- Time series analyses and Difference-in-difference studies
- RMM effectiveness

Draft Catalogue of Standard Analyses: Off-the-shelf studies and examples

Standard Analysis	Regulatory example
Population-level disease epidemiology	Prevalence of rare disease/sBackground rates of AESI or DMEs
Patient-level disease epidemiology	Natural history/prognosisCurrent practice/treatment patterns
Population-level DUS	 Incidence and prevalence of use of medicine/s over time
Patient-level DUS	Describing indication/s for drug/sTreatment duration, cumulative use

Off-the-shelf studies

These are mainly characterisation questions that can be executed with a generic protocol. This includes disease epidemiology, for example the estimation of the prevalence, incidence of health outcomes in defined time periods and population groups, or drug utilization studies at the population or patient level.

- Patient-level characterisation
- Patient-level DUS analyses
- Population-level DUS analyses
- Population-level descriptive epidemiology

The first DARWIN EU® package: IncidencePrevalence, a package to estimate population-based incidence/prevalence

Data source - Aggregated public data - Package results

Software performance

Task	CPRD AURUM (n=39,999,011)	CPRD GOLD (n=15,662,217)	SIDIAP (n=8,265,343)	IPCI (n=2,612,850)
Generating denominator (8 cohorts)	19 mins	8 mins	3 mins	1 min
Yearly period prevalence	11 mins	5 mins	5 mins	1 min
Monthly period prevalence	17 mins	6 mins	8 mins	2 mins
Yearly incidence	8 mins	3 mins	4 mins	1 min
Monthly incidence	13 mins	5 mins	7 mins	1 min

Software dissemination

IncidencePrevalence: Estimate Incidence and Prevalence using the OMOP Common Data Model

Calculate incidence and prevalence using data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model. Incidence and prevalence can be estimated for the total population in a database or for a stratification cohort.

Version:	0.4.1
Depends:	R (≥ 4.0)
Imports:	$ \begin{array}{l} \hline \textbf{CDMConnector} (\geq 1.0.0), \underline{checkmate} (\geq 2.0.0), \underline{cli} (\geq 3.0.0), \underline{DBI} (\geq 1.0.0), \underline{dbplyr} (\geq 2.0.0), \\ \underline{dplyr} (\geq 1.1.0), \underline{glue} (\geq 1.5.0), \underline{ggplot2} (\geq 3.4.0), \underline{scales} (\geq 1.1.0), \underline{lubridate} (\geq 1.0.0), \underline{magrittr} (\geq 2.0.0), \\ \underline{purr} (\geq 0.3.5), \underline{rlang} (\geq 1.0.0), \underline{stringr} (\geq 1.5.0), \underline{tidyr} (\geq 1.2.0), \underline{tidyselect} (\geq 1.2.0), \underline{zip} \\ (\geq 2.2.0) \end{array} $
Suggests:	knitr, rmarkdown, RPostgres, tibble, duckdb, odbc, here, Hmisc, epitools, tictoc, testthat (≥ 0.3.1), spelling, PaRe
Published:	2023-07-11
Author:	Edward Burn 💿 [aut, cre], Berta Raventos 💿 [aut], Marti Catala 💿 [aut], Mike Du 💿 [ctb], Yuchen Guo 💿 [ctb], Adam Black 💿 [ctb], Ger Inberg 💿 [ctb], Kim Lopez 💿 [ctb]
Maintainer:	Edward Burn <edward.burn at="" ndorms.ox.ac.uk=""></edward.burn>
License:	<u>Apache License (≥ 2)</u>
URL:	https://darwin-eu.github.io/IncidencePrevalence/
NeedsCompilation	n: no
Language:	en-US
Materials:	README
CRAN checks:	IncidencePrevalence results
Documentation:	
Reference manual	: IncidencePrevalence.pdf

Vignettes: a01_Introduction_to_IncidencePrevalence a02_Creating_denominator_cohorts a03_Creating_outcome_cohorts a05_Calculating_prevalence a06_Calculating_incidence

Downloads:

Package source: <u>IncidencePrevalence_0.4.1.tar.gz</u>

Windows binaries: r-devel: IncidencePrevalence_0.4.1.zip, r-release: IncidencePrevalence_0.4.1.zip, r-oldrel: IncidencePrevalence_0.4.1.zip macOS binaries: r-release (arm64): IncidencePrevalence_0.4.1.tgz, r-oldrel (arm64):

 IncidencePrevalence_0.4.1.tgz, r-release (x86_64): IncidencePrevalence_0.4.1.tgz, r-oldrel (x86_64): IncidencePrevalence_0.4.1.tgz

 Old sources:
 IncidencePrevalence archive

 Received:
 30 May 2023
 Revised:
 27 September 2023
 Accepted:
 2 October 2023

 DOI:
 10.1002/pds.5717

 10.1002/pds.5717

OR IGINAL ARTICLE

WILEY

(E) Check for up

Incidence Prevalence: An R package to calculate populationlevel incidence rates and prevalence using the OMOP common data model

 Berta Raventós^{1,2}
 Imartí Català³
 Imartí Mike Du³
 Imartí Vuchen Guo³
 Imartí Català³
 Imartí Mike Du³
 Imartí Vuchen Guo³
 Imartí Mike Du³
 Imartí Mike Du³
 Imartí Vuchen Guo³
 Imartí Mike Du³
 Imartí Mike Du³

⁴Fundació Institut Universitari per a la recerca Abstract a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGo), Barcelona, Spain ²Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) Barrelona Snain ³Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDROMS) University of Oxford, Oxford, UK ⁴Odysseus Data Services, Cambridge, Mass achusetts, USA ⁵Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands Correspondence Edward Burn, Botnar Research Centre, Windmill Road, OX37LD, Oxford, UK. Email: edward.bum@ndorms.cx.ac.uk

Funding information European Medicines Agency Purpose: Real-world data (RWD) offers a valuable resource for generating population-level disease epidemiology metrics. We aimed to develop a well-tested and user-friendly R package to compute incidence rates and prevalence in data mapped

user-friendly R package to compute incidence rates and prevalence in data mapped to the observational medical outcomes partnership (OMOP) common data model (CDM).

Materials and Methods: We created IncidencePrevalence, an R package to support the analysis of population-level incidence rates and point- and period-prevalence in OMOP-formatted data. On top of unit testing, we assessed the face validity of the package. To do so, we calculated incidence rates of COVID-19 using RWD from Spain (SIDIAP) and the United Kingdom (CPRD Aurum), and replicated two previously published studies using data from the Netherlands (IPCI) and the United Kingdom (CPRD Gold). We compared the obtained results to those previously published, and measured execution times by running a benchmark analysis across databases.

Results: IncidencePrevalence achieved high agreement to previously published data in CPRD Gold and IPCI, and showed good performance across databases. For COVID-19, incidence calculated by the package was similar to public data after the first-wave of the pandemic.

Conclusion: For data mapped to the OMOP CDM, the IncidencePrevalence R package can support descriptive epidemiological research. It enables reliable estimation of incidence and prevalence from large real-world data sets. It represents a simple, but

Berta Raventós and Martí Català should be considered as joint first-authors

This work has been presented as a Software Demonstration in the Observational Health Data Sciences and Informatics (DHDSI) Symposium held in Bethesda, USA, on 34–36 October 2022.

This is an open access article under the terms of the Creative Commons Attribution-NonCommonLid-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly dited, the use is non-commercial and no modifications or adaptations are made. © 2023 The Authons. Pharmacocarbidmicings and Drug Safety published by John Wiley S Sons Ltd.

Pharmacoepidemiol Drug Saf. 2023;1-11.

wileyo ninelibrary.com/journal/pds 1

AGENDA

- Open science and federated analytics
- Standardised data -> Standardised analyses
- Impactful examples
- True impact: DARWIN EU and FAIRS UK

"Simple" characterisation

RESEARCH

Use of repurposed and adjuvant drugs in hospital patients with covid-19: multinational network cohort study Check for updates

> Albert Prats-Uribe,¹ Anthony G Sena,^{2,3} Lana Yin Hui Lai,⁴ Waheed-Ul-Rahman Ahmed,^{5,6} Heba Alghoul,⁷ Osaid Alser,⁸ Thamir M Alshammari,⁹ Carlos Areia,¹⁰ William Carter,¹¹ Paula Casajust,¹² Dalia Dawoud,^{13,14} Asieh Golozar,^{15,16} Jitendra Jonnagaddala,¹⁷ Paras P Mehta,¹⁸ Mengchun Gong,¹⁹ Daniel R Morales,^{20,21} Fredrik Nyberg,²² Jose D Posada,²³ Martina Recalde,^{24,25} Elena Roel,^{24,25} Karishma Shah,⁵ Nigam H Shah,²³ Lisa M Schilling,¹¹ Vignesh Subbian,²⁶ David Vizcaya,²⁷ Lin Zhang,^{28,29} Ying Zhang,¹⁹ Hong Zhu,³⁰ Li Liu,³⁰ Jaehyeong Cho,³¹ Kristine E Lynch,³² Michael E Matheny,^{33,34} Seng Chan You,³⁵ Peter R Rijnbeek,³ George Hripcsak,³⁶ Jennifer CE Lane,⁵ Edward Burn,^{1,24} Christian Reich,³⁷ Marc A Suchard, ³⁸ Talita Duarte-Salles, ²⁴ Kristin Kostka, ^{37,39} Patrick B Rvan, ^{2,40} Daniel Prieto-Alhambra¹

Prats-Uribe et al. BMJ 2021

A Prats-Uribe et al. BMJ 2021

THE RISE AND FALL OF HCQ (BEFORE TRIALS)

February 2020

et

4 February Wang et al - Remdesivir and chloroquine effectively inhibit covid-19 in vitro

Fig 4 | Time trends in hydroxychloroquine use on days 0 to 30 after hospital admission in patients with a positive test result for or diagnosis of covid-19 by month. CUIMC=Columbia University Irving Medical Center; HIRA=Health Insurance Review and Assessment; OMOP=Observational Medical Outcomes Partnership; Optum-EHR=Optum deidentified electronic health record dataset; STARR=STAnford medicine Research data Repository; TRDW=Tufts Research Data Warehouse; VA=Veterans Affairs

Comparative safety

RESEARCH

OPEN ACCESS

Check for updates

Comparative risk of thrombosis with thrombocytopenia
 syndrome or thromboembolic events associated with different
 covid-19 vaccines: international network cohort study from five
 European countries and the US

Xintong Li,¹ Edward Burn,^{1,2} Talita Duarte-Salles,² Can Yin,³ Christian Reich,³ Antonella Delmestri,¹ Katia Verhamme,⁴ Peter Rijnbeek,⁴ Marc A Suchard,^{5,6} Kelly Li,⁵ Mees Mosseveld,⁴ Luis H John,⁴ Miguel-Angel Mayer,⁷ Juan-Manuel Ramirez-Anguita,⁷ Catherine Cohet,⁸ Victoria Strauss,¹ Daniel Prieto-Alhambra^{1,4}

Xintong Li et al. BMJ 2022

- Objective: To quantify the comparative risk of thrombosis +/thrombocytopenia associated with adenovirus- vs mRNA-based COVID vaccination
- **Design**: International active comparator cohort study incl data from DE, ES, FR, NL, UK, and USA

• Analysis:

- 1. Large-scale PS matching
- 2. Incidence rate ratios 28-d post-each dose
- 3. Meta-analysis across databases (where I2<40%)

Table 1 | Descriptions of medical records databases used in study

		Active size of		Key data available						
Database full (short) names	Country	database (by mid-2021; No of people)	- Latest data available time	Covid-19 vaccines	Hospital treatments	Hospital outcomes	Outpatient treatments	Platelet counts		
Clinical Practice Research Datalink Aurum (UK CPRD)	UK	13m	May 2021	Complete	No	Incomplete	Yes	Yes		
Information System for Research in Primary Care with minimum basic set of hospital discharge data (CMBD-HA; Spain SIDIAP)	Spain	6m	June 2021	Complete	No	Linked	Yes	Yes		
Integrated Primary Care Information (Netherlands IPCI)	The Netherlands	2m	June 2021	Incomplete	No	Incomplete	Yes	Yes		
IQVIA Longitudinal Patient Data France (France LPD)	France	2.3m	September 2021	Incomplete	No	Incomplete	Yes	Yes		
IQVIA Disease Analyser Germany (Germany DA)	Germany	8.5m	August 2021	Incomplete	No	Incomplete	Yes	Yes		
Medical and Institutional Claims (US Open Claims)	US	187m	September 2021	Incomplete	Incomplete	Incomplete	Yes	Yes		
Charge Data Master (US Hospital CDM)	US	30m	July 2021	Incomplete	Yes	Yes	Incomplete	Incomplete		

Meta-analytical estimates

Outcome 0	Calibrated incidence rate ratio (95% CI)	Calibrated incidence rate ratio (95% CI)	1 ²	UK CPRD	Germany DA	Netherlands IPCI	France LPD
ChAdOx1-S first dose v BNT162b2	first dose						
Arterial thromboembolism	0.87 (0.75 to 1.01)		0	Х	Х	Х	Х
Deep vein thrombosis	1.58 (0.56 to 4.42)		0.86	Х	Х	Х	
lschemic stroke	0.94 (0.48 to 1.81)		0.51	Х	Х	Х	
Myocardial infarction	0.96 (0.8 to 1.15)		0	Х	Х	х	Х
Pulmonary embolism	0.96 (0.79 to 1.15)		0	Х	Х	Х	
Thrombocytopenia	1.33 (1.18 to 1.5)	-7	0	Х	Х	Х	Х
Venous thromboembolism	1.3 (0.75 to 2.26)		0.65	Х	Х	Х	Х
		0.5 1 3					
ChAdOx1-S second dose v BNT162	2b2 second dose						
Arterial thromboembolism	1.01 (0.78 to 1.32)		0	Х	Х	Х	
Deep vein thrombosis	0.93 (0.66 to 1.31)	• • • • • • • • • • • • • • • • • • •	0	Х		Х	
Myocardial infarction	0.89 (0.64 to 1.25)		0	Х	Х	Х	
Pulmonary embolism	0.83 (0.58 to 1.2)		0	Х	Х		
Thrombocytopenia	0.93 (0.78 to 1.11)		0	Х	Х	Х	
Venous thromboembolism	0.84 (0.65 to 1.09)		0	Х	Х	Х	
		0.6 0.7 1					
Ad26.COV2.S v BNT162b2 first dos	se		 ²	German DA	y Spain SIDIAP	Netherlands IPCI	US Open Claims
Arterial thromboembolism	0.89 (0.58 to 1.37)		0	Х	Х	х	Х
Deep vein thrombosis	0.99 (0.58 to 1.67)		0.14	Х	Х		Х
Intestinal infarction	0.37 (0.15 to 0.89)		0		Х		Х
lschemic stroke	0.99 (0.63 to 1.55)		0	Х	Х		Х
Myocardial infarction	0.97 (0.61 to 1.53)		0	Х	Х	Х	Х
Pulmonary embolism	1.17 (0.7 to 1.97)		0.06	Х	Х		Х
Splanchnic and visceral thrombosis	1.52 (0.67 to 3.47)		0		Х		Х
Thrombocytopenia	1.08 (0.58 to 1.99)		0.78	Х	Х		Х
TTS Deep vein thrombosis	1.83 (0.62 to 5.38)		0		Х		Х
TTS Venous thromboembolism	2.26 (0.93 to 5.52)		0		Х		Х
Venous thromboembolism	1.38 (0.64 to 2.99)		0.73	Х	Х		Х
		0.3 1 3					

Xintong Li et al. BMJ 2022; 379:bmj-2022-071594

Conclusions

-No differential risk of 'common' thromboembolic events, venous or arterial

-A 30% increased risk of thrombocytopenia

-A trend towards an increased risk of TTS-VTE

RMM Effectiveness

Measuring the effect of regulatory action

Results of the first OHDSI UK Study-a-thon

 Fluoroquinolones are popular antibiotics for the treatment of minor (eg UTI) as well as major (eg severe kidney) infections

• Their use increased over the years, and then we learned of potential severe side effects, including tendon rupture

 These seem more common in certain population subgroups, like older people and those using corticosteroids

 Based on this, a number of regulators have imposed risk minimization measures to reduce the use of fluoroquinolones

- In collaboration with the UK national drugs and medical device regulator (MHRA), we conducted a Study-A-Thon to estimate the impact of regulatory actions on the use of fluoroquinolones nationally
 - In primary care/outpatient vs Inpatient data
 - In older vs younger people

- Different healthcare settings
 - Primary care (CPRD GOLD and Aurum)
 - Hospital data (Barts Health)
 - Linked data (HIC Dundee)
- Different geographies/health regions with different protocols/etc
 - CPRD GOLD: mostly Scotland and Northern Ireland
 - CPRD Aurum: only England
 - Barts Health: London
 - HIC Dundee: Scotland

(Standardised) Analytics

- Monthly incidence rates of use, stratified by time, age (<=60 vs >60), and sex calculated using IncidencePrevalence
- Patient-level characterization of new drug users to identify indication, comorbidities, etc using PatientProfiles and DrugUtilisation
- Interrupted time series
- ARIMA

DrugUtilisation

INCIDENC

Results (1) – ITS - London hospital

Date

group ---- Remove Intervention Barts Health 19 - 59 ---- With Intervention Barts Health 19 - 59 ---- 19 - 59 Barts Health

Results (2) – ITS - Scottish linked data

Date group ··•· Remove Intervention East Scotland data 60 and over ··•· With Intervention East Scotland data 60 and over

60 and over East Scotland data

Date

group 🚥 Remove Intervention East Scotland data 19 - 59 🚥 With Intervention East Scotland data 19 - 59 🛶 19 - 59 East Scotland data

Results (3) – ITS – Eng primary care data

Date

group ---- Remove Intervention CPRD Aurum 19 - 59 ---- With Intervention CPRD Aurum 19 - 59 ---- 19 - 59 CPRD Aurum

Results (4) – ARIMA - London hospital

Date

group ···•· Remove intervention Barts Health 19 - 59 ···•· With intervention Barts Health 19 - 59 — 19 - 59 Barts Health

Results (5) – ARIMA - Scottish linked data

group ---- Remove intervention East Scotland data 19 - 59 ---- With intervention East Scotland data 19 - 59 ---- 19 - 59 East Scotland data

Results (6) – ARIMA – GOLD GP data

Date

group -- Remove intervention CPRD GOLD 60 and over -- With intervention CPRD GOLD 60 and over -- 60 and over CPRD GOLD

group 💀 Remove intervention CPRD GOLD 19 - 59 💀 With intervention CPRD GOLD 19 - 59 🔶 19 - 59 CPRD GOLD

- We leveraged previously tested and regulatory-proof tools for standardized analytics, and completed the whole study in just over a few weeks
- We showed differences that matter for national regulators
 - Geographic heterogeneity
 - Differences by healthcare setting
- We showed proof-of-concept for how a regulatory network could help MHRA fulfil their mission

AGENDA

- Open science and federated analytics
- Standardised data -> Standardised analyses
- Impactful examples
- True impact: DARWIN EU and FAIRS UK

Disclosure

This presentation represents the views of the DARWIN EU® Coordination Centre only and cannot be interpreted as reflecting those of the European Medicines Agency or the European Medicines Regulatory Network.

Generating Real-World Evidence (RWE) from Real-World Data (RWD)

Real-World Data (RWD): routinely collected data relating to patient health status or the delivery of health care from a variety of sources other than traditional clinical trials

Real-World Evidence (RWE): information derived from analysis of real-world data

RWE for regulatory purposes needs to be:

- Fast, transparent, scalable and reproducible
- Representative (of EU regions)

DARWIN EU® is a federated **network** of **data**, **expertise** and **services** that supports better decision-making throughout the product lifecycle by generating reliable **evidence from real world healthcare data**

FEDERATED NETWORK PRINCIPLES

- Data stays local
- Use of Common Data Model to perform studies in a timely manner and increase consistency of results

What is the DARWIN EU[®] process for conducting studies?

Data Partners – Phase I

Data Partners – Phase II

Data Partners – Phase II

Key figures

Since 2022, 20 data partners have been onboarded. In 2024 and 2025, additional ten data partners per year will join the network.

Data partners

DARWIN EU® Studies – Phase I (all complete)

Туре	Studies	Data Partners	Planned RWE use	Committee
OTS	Population level epidemiology study on prevalence of rare blood cancers from 2010.	NL, ES, UK, BE, DE	Support COMP in orphan designation decision making	COMP
OTS	Patient level drug utilisation study of valproate-containing medicinal products in women of childbearing potential from 2010	NL, ES, UK, BE, DE, FI	Assess the use of valproate after safety referral	PRAC
OTS	Patient level drug utilisation study of antibiotics on the Watch list of the WHO AWaRe classification, 2010-2021	NL, FR, ES, DE, UK	Inform PRAC/CHMP decision making	PRAC – CHMP AMR strategy
Com plex	Background all-cause mortality rates in patients with severe asthma aged ≥12 years old		Support CHMP evaluation and post-authorisation informing future decision making	СНМР

STUDIES YEAR 2 (1)

Study Title	Committees	Study Type	Type of analysis	Data bases	Status			
DARWIN EU® - Multiple myeloma : patient characterisation, treatments and survival in the period 2012-2022	HTA/Payers	OTS	Disease Epidemiology and Treatment Pattern analysis	IQVIA DA (Ge) SIDIAP (Spain) IMASIS (Spain) Estonian Biobank ACI Varha (Fi) CHUBX (France) IKNL (NI)	Ongoing			
DARWIN EU [®] Drug Utilisation Study	PRAC	OTS	Drug Utilisation Study	Estonian Biobank	Ongoing			
Year 2 (Feb 23 to Jan 24) - 16 studies completed / being reviewed								
DARV Natu	DARV Natu							
vacc conte Year 3 (Feb 24 to Jan 25)								
DARV endo and r (PDF								

hypertension (PAH)

FAIRS UK

A UK national regulatory science network using OMOP

Application details

Competition name UK Regulatory Science and Innovation Networks – Discovery phase

Application name Federated Analytics Initiative for Regulatory Science in the UK: FAIRS-UK

Stage 1 awarded. Stage 2 to be submitted this summer

FAIRS UK

Data Partners

Acronym	Coverage	Provenance
CPRD-HES	UK-wide	Primary care (with linked hospital admissions)
UK Biobank	UK-wide	Biobank, genetics, linked EHR
Barts Health NHS Trust	London	Hospital EHR
Lancashire Hospitals NHS Trust	North-West England	Hospital EHR
Great Olmond Street Hospital	London	Paediatric specialist hospital
HIC – NHS Tayside and Fife	Scotland	Linked NHS data
SAIL	Wales	Linked data

FAIRS UK

A UK national regulatory science network using OMOP

- Open science and federated analytics
- OMOP CDM
- Standardised analytics for regulatory decision making (MHRA)

