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Background

When analyzing a relatively rare binary outcome, double-zero studies (DZS) — those with no events in both
arms — present critical statistical challenges, leading to potential numerical instability and bias in estimating
treatment effects [1, 2]. This studies are particularly prevalent in meta-analyses of observational health data
in fields associated with rare events, such as surgical complications or adverse drug reactions [3, 4]. DZS
are directly relevant to the OHDSI community as they could skew the conclusions drawn from observational
health data, impacting the quality of research outputs and real-world decision-making in healthcare.

Strategies such as continuity correction [5, 1] or omission of DZS [1] in meta-analyses have been sug-
gested. However, these approaches can lead to biased conclusions [6, 7, 8]. While continuity correction pre-
vents computational errors, it typically biases study estimates towards null difference and inflates variance
estimates. Excluding DZS, although straightforward, may not effectively leverage all available evidence and
potentially result in bias if the omitted studies systematically differ from the included ones.

Generalized linear mixed models (GLMMs) offer a more flexible approach for modeling effect sizes and
can incorporate information from DZS [9, 10]. Bivariate generalized linear mixed models (BGLMM) have
been proposed to include random effects and potential correlation between treatment groups [11, 12, 13].

Despite their utility, all the models mentioned above fail to address one potential key cause of DZS,
i.e., heterogeneity in the population. DZS may occur if the study involves sub-populations with a negligible
or extremely low probability of experiencing the event of interest. For instance, healthy subjects less than
65 years old only have negligible risks of experiencing hospitalization or death due to severe symptoms
from COVID-19, compared to immunocompromised, unhealthy or older subjects. This seems to support
our argument of negligible risk: People with very young or old age are more likely to experience adverse
drug reactions [14].

We propose a zero-inflated bivariate generalized linear mixed effects model (ZIBGLMM). Zero-inflated
models have been commonly applied in other areas to model excess zero counts. Our work is the first one to
apply zero-inflated models to meta-analyses. It assumes that a meta-analysis with many zero-event studies
potentially contains two subpopulations: one with a near-zero risk and another with a higher risk. The
ZIBGLMM can account for heterogeneity and correlation among studies and estimate the overall effect size
as well as the proportion of the low-risk population in each study.
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Methods

Let Nik be the number of subjects, and pik be the probability of an event for the ith study (i = 1, 2, . . . , m)
where k = 1 represents treatment (or exposure) group and k = 0 represents the control (or unexposed)
group respectively. Let Xijk denote a Bernoulli random variable with a value of 1 denoting an event and a
value of 0 denoting a non-event for the jth subject (j = 1, 2, . . . , Nik) of the ith study in the kth treatment
group. Let Yik = ΣNi

j=1 Xijk be the total number of events in kth group in the ith study. The event counts
follow a binomial distribution Yik ∼ Bin (Nik, pik) .

The bivariate generalized linear mixed effects model (BGLMM) directly models the event counts Yik
with binomial likelihoods instead of estimating the effect sizes of individual studies and can be specified as
follows: let g(·) denote the link function that transforms event probabilities into linear forms. We have

g (pi0) = µ0 + νi0;

g (pi1) = µ1 + νi1;

(νi0 , νi1)
⊤ ∼ N

(
(0, 0)⊤, Σ

)
, Σ =

(
σ2
0 rσ0σ1

rσ0σ2 σ2
1

)
.

To address population difference, we introduce the ZIBGLMM, which is a two-component finite mixture
model. We denote π as the proportion of studies with healthy population representing individuals who have
approximately zero risk for the event of interest.

The ZBGLMM combines two zero-generating processes for the number of events Yik. The first process
generates double zeros for both arms from extremely low-risk sub-populations. The second process is
governed by a binomial distribution that generates numbers of events, some of which may be zero due to
chance. The mixture is described as follows:

P (Yi0 = 0, Yi1 = 0) = π + (1− π)
1∏

k=0

(1− pik)
Nik ;

P (Yi0 + Yi1 > 0)×P (Yi0 = yik, Yi1 = yik | Yi0 + Yi1 > 0) = (1−π)

1∏
k=0

(
Nik

yik

)
(pik)

yik (1− pik)
Nik−yik ;

g (pi0) = µ0 + νi0, g (pi1) = µ1 + νi1 , (νi0 , νi1)
⊤ ∼ N

(
(0, 0)⊤, Σ

)
, Σ =
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σ2
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1

)
.

This formulation of ZIBGLMM is particularly advantageous because it incorporates a zero-risk subpop-
ulation, accounting for sub-populations with a zero risk experiencing the studied outcome. Being an entirely
data-driven approach, ZIBGLMM is capable of accurately capturing the excessive number of double zero
studies, leading to improved model fitting and more reliable results in meta-analyses.

Results

We conducted extensive simulations to evaluate our methods. Detailed settings of the simulation studies can
be found in Table 1.
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Table 1: Specifications for the simulation studies.

Parameter Value

Zero-inflation rate 25%, 50%
# studies (n) 10 (small), 25 (moderate), 50 (large)
Average event rates for the
non-zero-inflated part

3% for the control group on average, generated from a
BGLMM model

Marginal RR 1, 1.5, 2
Study sizes 50
# double zero studies Binomial (# studies, Zero-inflation rate)

We compared the coverage properties of meta-analyses excluding DZS and both the frequentist and
Bayesian versions of BGLMM and ZIBGLMM. The coverage probabilities, in addition to the mean lengths
of confidence intervals, are depicted in Figure 1.

Figure 1: Coverage probability of the five methods: meta-analysis (MA), BGLMM, Bayesian BGLMM,
ZIBGLMM, and Bayesian ZIBGLMM. The Bayesian BGLMM and Bayesian ZIBGLMM displayed com-
parable, consistently high coverage probabilities to meta-analysis, while maintaining the shortest mean confi-
dence interval widths across all settings. The coverage probabilities for all methods decreased as the average
marginal RR increased and as the size of studies increased.

Remarkably, the Bayesian BGLMM and Bayesian ZIBGLMM displayed comparable, consistently high
coverage probabilities to meta-analysis, while maintaining the shortest mean confidence interval widths
across all settings. The coverage probabilities for all methods decreased as marginal RR and size of studies
increased.

Figure 2 portrays the bias in the estimation of relative risk by meta-analysis excluding DZS, alongside
the BGLMM, ZIBGLMM, and the Bayesian versions of BGLMM and ZIBGLMM.
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Figure 2: Bias in the estimation of relative risk procured from meta-analysis excluding DZS (MA), along-
side the BGLMM, ZIBGLMM, and the Bayesian versions of BGLMM and ZIBGLMM based on all three
simulated RRs (1, 1.5, and 2.0). For a small sample size of studies (10), the frequentist ZIBGLMM appears
to exhibit the least bias in estimation. In a moderate sample size (25 studies), both Bayesian BGLMM and
frequentist ZIBGLMM manifest the least bias. As the sample size expands to large (50 studies), the smallest
bias is achieved by the Bayesian BGLMM and ZIBGLMM. Frequentist ZIBGLMM consistently demon-
strates less bias than the frequentist BGLMM. For all settings, both frequentist and Bayesian BGLMM and
ZIBGLMM consistently yield smaller biases compared to meta-analyses that exclude DZS.

Moreover, the frequentist ZIBGLMM consistently demonstrates less bias than the frequentist BGLMM.
For all settings, both frequentist and Bayesian BGLMM and ZIBGLMM consistently yield smaller biases
compared to meta-analyses that exclude DZS.

Conclusion

Our study illustrates the importance and potential of the ZIBGLMM as a new approach in handling double
zero studies, thereby significantly contributing to the optimization of meta-analytic methods. The key ad-
vantage of ZIBGLMM lies in its superior ability to handle excess zero data and its robustness in estimating
relative risk.

Evidence synthesis plays a central role in distributed research networks such as OHDSI. It is crucial
to develop rigorous and data-adaptive methods to account for the intrinsic heterogeneity across populations
within OHDSI network. Specifically, in pharmacoepidemiological studies focusing on adverse events where
outcomes are rare, the integration of double-zero studies using suitable methods is necessary for generating
reproducible and reliable clinical evidence. Our research aligns with the mission of OHDSI by advancing
the frontier of methodology in clinical evidence generation and evidence synthesis.
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