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1. Background 

Multimorbidity, the simultaneous occurrence of multiple diseases within an individual, is 

posing significant challenge to healthcare systems 1–4. In depth understanding of intricate 

multimorbidity reveals shared molecular mechanism among various diseases 5–7, offering 

opportunities for innovative prevention strategies, targeted interventions, and personalized 

treatments for patients with multimorbidities 8–11. Large-scale electronic health record (EHR) 

systems have significantly enhanced the statistical power to examine robust multimorbidity 

patterns that mirror real-world scenarios7,12–16. Network analysis has been a powerful approach to 

decipher complex multimorbidity patterns 17–19. Integrating multiple EHR systems can improve 

the generalizability of multimorbidity characterization. However, current standards and tools 

limit the characterization of multimorbidity patterns across different populations, particularly in 

phenome-wide analyses using large-scale electronic health record (EHR) systems1,20. In this 

study, we build a phenome-wide multimorbidity knowledge base compiled from three major 

EHR databases: Vanderbilt University Medical Center (VUMC), Massachusetts General 

Brigham Hospital (MGB), and UK Biobank (UKB). And we developed an interactive web 

application called Phenome-wide Multi-Institutional Multimorbidity Explorer (PheMIME), 

which enables researchers to interactively explore, compare and discover multimorbidity 

patterns. 

2. Methods 

2.1. Data Integration and Multimorbidity Knowledge Base 

We accessed three EHR databases that included individual-level data for 250,000 random 

patients each from VUMC and MGB, as well as data from 431,105 subjects in the UKB. The 

ICD 10 codes were mapped to phecodes and logistic regressions adjusting for patient age at last 



recorded visit, sex, race, and the number of unique phecodes present in patients’ records were 

run for each pair of two phecodes with two conditions of either phecode A or phecode B 

regarded as the outcome and the other one treated as the independent variable 19. The averaged 

test statistic from the two regression analyses is then used as an estimate for the multimorbidity 

strength between the phecode pair A and B. Multimorbidity strengths of all pairs are 

subsequently calculated and used to construct a phenome-wide multimorbidity network, which 

represents an undirected weighted networks with disease as nodes and disease-disease 

connections as edges, weighted by the multimorbidity strengths. In addition, Pearson correlation 

of the common multimorbidity patterns between each pair of phecodes is used as a similarity 

score, which was also used to generate another undirected weighted network using the similarity 

scores as weights with disease as nodes and connections as edges. We call this a multimorbidity 

similarity network. We finally consolidate all the summarized data from three institutions into a 

database. 

2.2. Design Scheme 

PheMIME incorporates five primary modules: (1) "Disease Selection" module facilitates 

an interactive phecode table where users can seamlessly search, filter, and select a disease 

phecode of interest. (2) "Multimorbidity Consistency Inspection" module enables users to assess 

the overall consistency of multimorbidity strength measurements from the knowledge base and 

compare them across multiple institutions. Additionally, this module incorporates features that 

underscore significant multimorbidity strengths linked to the selected phecode of interest, aids in 

assessing their distribution amidst all multimorbidity measurements, and enables comparison 

across institutions. (3) "Multimorbidity Network Visualization" module presents interactive 

visual representations of the multimorbidity networks constructed based on the multimorbidity 



strength measurements. By integrating a dynamic network visualization and clustering 

methodology called associationSubgraphs 17, this module permits exploration of the network's 

subgraph structures and dynamic clustering for any multimorbidity network from a single 

institution or an amalgamation of multiple institutions. Moreover, this module enables users to 

apply filters and emphasize any significant multimorbidities and investigate their 

interconnections and enriched subgraphs. (4) "Reproducible Multimorbidities Exploration" 

module provides an interactive environment for examining a customizable subset of reproducible 

multimorbidities across the institutions. This interface allows users to visualize the 

interconnections among chosen phecodes and the enriched multimorbidity subgraphs within the 

combined multimorbidity networks. Furthermore, this module accommodates pairwise 

comparisons between all institutions. (5) "Multimorbidity Similarities Exploration" module, uses 

multimorbidity similarity measurements as the strength measurement. It permits visualization of 

interconnected phecodes and the multimorbidity subgraphs enriched in the combined 

multimorbidity similarity networks and enables pairwise comparisons between all institutions. 

3. Results 

The PheMIME knowledge base and web application are accessible at 

https://prod.tbilab.org/PheMIME/. A comprehensive tutorial, including a use-case example, is 

available at https://prod.tbilab.org/PheMIME_supplementary_materials/. Furthermore, the source 

code for PheMIME can be freely downloaded from https://github.com/tbilab/PheMIME. Once a 

disease of interest is selected, the tool generates interactive visualization and tables that users can 

delve into multimorbidity networks within a single system or compare across multiple systems. 

Figure 1A shows an interactive Manhattan plot and a scatter plot that enables users to select and 

highlight a consistent set of the same phecodes based on the magnitude and consistency of 



disease multimorbidities. The data table in Figure 1B shows comorbid phecodes of the user-

selected phecode, its description, disease categories and corresponding multimorbidity strengths 

among three institutions. This table is interactive with the Manhattan and Scatter plots, allowing 

users to add or remove phecodes by clicking on the rows in the table. If a disease multimorbidity 

exhibits both a large magnitude and high consistency across different systems, it strongly 

indicates a robust disease multimorbidity across the systems. Figure 1C presents the interactive 

network visualization to explore subgraph structure of multimorbiditeis. For dynamic network 

analysis, the associationSubgraphs method 17 has been enhanced to provide an interactive 

visualization to rapidly explore subgraph structures. As shown in Figure 1C, network nodes are 

annotated into two groups, with the selected phecodes color-filled based on disease categories 

and the other unselected phecodes (nodes) color-filled in grey. Users have the ability to visualize 

the subgraphs that enhances the selected phecodes within the combined multimorbidity networks 

and users can easily identify the diseases present in these enriched subgraphs.  

 

4. Conclusion 

We have introduced PheMIME, an interactive visualization tool specifically designed for 

analyzing multimorbidities across multiple institutions, which simultaneously presents an 

extensive multimorbidity knowledge base consolidating data from three major EHR systems. To 

our understanding, PheMIME is the first knowledge base of its kind, integrating and comparing 

data from multiple extensive EHR systems while providing substantial support for efficient 

online analysis and interactive visualization, aiding in the discovery of complex multimorbidity 

patterns. 
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