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Background

External validation is crucial for ensuring the reliability of prediction models on new data. However,
performance often declines during external validation due to database heterogeneity caused by variations
in record collection, regulatory guidelines, and database purposes. [1]

Use Case: Figure 1 depicts a hypothetical model developed on the Integrated Primary Care and
Information, a Dutch GP database, with predictors Heart failure, Depression, and COPD, which cannot be
applied to a patient from an external database who has slightly different diagnoses. However, considering
the contextual similarity, a medical expert may have been able to apply the model based on clinical
domain knowledge.
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Figure 1. Incompatible model and patient record due to database heterogeneity.

This work aims to utilizes embeddings to approximate clinical concepts, specifically in the context of
predicting dementia in persons aged 55-85 in the next five years. This approach may enable external
validation of a model even when an exact match for predictors is not found in a patient's record.

Methods

Clinical domain knowledge is encoded in our vocabulary hierarchies. For example, SNOMED provides over
one million ancestor-descendant relationships. Figure 2 shows a subset of 177 SNOMED relationships with
the ancestor concept Clinical finding as tree root. In this work we embed the SNOMED hierarchy, to obtain
a latent space in which items that resemble one another are positioned closer to each other, which will



allow us to approximate missing concepts.
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Figure 2. Subset of SNOMED medical terms hierarchy with the concept Clinical finding as the root.

Nickel & Kiela introduced an efficient method to embed hierarchical data, such as the SNOMED hierarchy,
into a lower-dimensional manifold [2]. Hierarchical data follows a tree structure. The number of
descendants exponentially increases with distance from the root. To address the limitation of growing
hierarchical data, which can exceed the available Euclidean space in Euclidean embeddings and can cause
overfitting if we attempt to solve it by adding more dimensions, Nickel & Kiela proposed using hyperbolic
space instead. Hyperbolic space is characterized by constant negative curvature and is described by
hyperbolic geometry. For this study, we will use the hyperbolic Poincaré disk model to embed our
hierarchical data.

We develop and externally validate logistic regression and gradient boosting models across five
databases: Integrated Primary Care and Information, IBM MarketScan® Medicare Supplemental, Iqvia
Disease Analyzer Germany, Optum® de-identifed Clinformatics® Data Mart, and Optum® de-identified
Electronic Health Record. For development, the hyperbolic embeddings are mean aggregated to be
passed into the models as input. We use conditions as sole predictors, which may result in relatively low



discrimination performance as compared to models using also demographic information such as age.

Results
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Figure 3. Discrimination of logistic regression using traditional concepts (left) and using the embeddings (right).
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Figure 4. Discrimination of gradient boosting using traditional concepts (left) and using the embeddings (right).

Hyperbolic embeddings do not improve internal or external validation performance of logistic regression
models (Figure 3). However, using gradient boosting we can observe that models trained on Integrated
Primary Care and Information transport better to Iqvia Disease Analyzer Germany and vise versa.
Therefore, we believe clinical domain knowledge from the SNOMED medical terms hierarchy can in
some cases be used to improve external validation performance of a clinical prediction model. Future
work will investigate under what exact circumstances this holds true and whether more complex models
such as a Transformer will have improved validation performance, since training can be done directly on
the embedding sequences. Transformers can take the embedding sequence as input directly without the



mean aggregation step, which may further improve performance.
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