
 

 
 

Utilizing Graph Embeddings for Multiple Sclerosis Disease Modifying Therapy 
Adverse Event Prediction 

Jason Patterson1 
1 Tatonetti Lab, Department of Biomedical Informatics, Columbia University 

Background 

Multiple sclerosis (MS) is one of the leading causes of disability among young adults. Currently, the 
administration of disease-modifying therapy (DMT) through immunosuppressive drugs is the front-line 
management strategy for the disease.  However, the use of higher efficacy DMT frequently leads to the 
occurrence of adverse drug events (ADEs), and both risks and benefits must be assessed when selecting a 
treatment plan1. ADE information predominantly originates from clinical trials and post market 
surveillance via the Federal Adverse Events Reporting Service (FAERS)2. However, both methods are 
limited to population-level statistics and fail to address ADE risk on the individual level. In this work, we 
use sequences of OMOP medical concepts in electronic health records (EHRs) to create an individual-level 
predictive model for ADE occurrence related to MS DMT. With the aid of Graph Convolutional Networks 
(GCN), we also created a novel method KG-LIME for explaining the output of the predictive model in terms 
of feature importance. We attempted to address gaps in other EHR ADE prediction methods, including 
inattention to time-varying nature of EHR data, stringent feature selection methods, and failure to address 
causation. 

Methods 

First, we sought to train embedding representations of OMOP concepts relevant to the task of ADE 
prediction with GCNs, with the hope that these embeddings would have high interpretability. GCNs learn 
embeddings of nodes in a knowledge graph by sharing weights along the edges of the graph. The 
Relational Graph Convolutional Network (R-GCN) architecture and the Hierarchy-Aware Knowledge Graph 
(HAKE) method were selected to perform the training due to their high representative ability of node 
relationships3,4. As input, we created a ADE knowledge graph from a combination of four data sources: 
the OnSIDES ADE database, the Drug Central database , the LOINC2HPO project, and the OMOP CDM5,6,7. 
Overall, there were 12,676 nodes representing OMOP Condition, Drug, and Measurement standard 
concepts with 186,594 edges of the following types: has_adverse_effect, has_indication, is_a, has_atc, 
associated_with_high (measurement), and associated_with_low (measurement). A subgraph centered 
around the drug insulin is shown in Figure 1. The R-GCN was trained via negative sampling link prediction 
such that embeddings could differentiate negative false edges from true positive edges at a high rate. 

 

We then designed a Long Short Term Memory (LSTM) predictive model for ADE occurrence that would 
take in as input the sequence of OMOP Condition, Drug, and Measurement concepts that are present in 
the knowledge graph and precede an index MS DMT drug administration date. Each concept was 
represented by its trained graph embedding and a “days removed from index” feature. The learning 
objective was the occurrence of an adverse event within 365 days following the index MS DMT drug 
administration date. A linear calibration layer at the end of the LSTM model ensured that outputs would 
be calibrated probabilities of ADE occurrence. We trained a separate LSTM model for 56 different adverse 
event types. 

 



 

 
 

Finally, we created a novel model explanation method that is derived from the popular Local Interpretable 
Model-Agnostic Explanations (LIME) method8. This new method KG-LIME outputs influential concepts for 
ADE risk prediction by probabilistically replacing concepts in input sequences with concepts that have 
similar or distal embeddings (Figure 2). Embedding similarity is calculable due to the nature of the GCN 
training and can be determined in terms of the relationship type (e.g. concepts can be similar because 
they have similar has_indication edges or instead because they have similar is_a edges). The perturbed 
sequences are then used to re-predict ADE risk. A Decision Tree Regressor learns the re-predicted ADE 
risks using the numerical differences in perturbed embeddings as input. Gini feature importance is 
extracted from the Decision Tree and the top concepts are presented as an explanation of how perturbing 
the input to varying degrees can shift the decision boundary. 

 

Results 

For a set of 4,859 patients, we found that our model was effective at predicting 35 out of 56 adverse event 
types (p < 0.05) when compared to demographics and past diagnosis as variables. We also assessed 
discrimination and calibration in the form of the Area Under the Precision-Recall Curve (AUC-PR = 0.35 ± 
0.25) and Brier Score (0.03 ± 0.02), respectively. These metrics seemed to vary across adverse event types 
and seemed highly correlated with frequency of event.  

 

Additionally, KG-LIME generated relevant concepts for ADE prediction (Figure 3). Particularly, past medical 
history of an ADE and drugs that are either indicated or known to have adverse effects often appear in 
explanations. We performed a soft validation by confirming that highlighted concepts generally compared 
to observations cited in literature. We hope to perform a more formal validation in the future. 

 

 
Figure 1: Insulin Subgraph of Knowledge Graph used to Train Concept Embeddings 

 

 



 

 
 

 
Figure 2: KG-LIME Model Explanation Algorithm 

 
Figure 3: KG-LIME Explanation for Model Prediction of Leukopenia for a Single Patient 

Conclusion 

Many of our risk models demonstrated high calibration and discrimination for adverse event prediction. 
Furthermore, our novel KG-LIME method was able to utilize a knowledge graph to highlight OMOP 
concepts that were important to prediction. Future work will be required to further explore the temporal 
window of adverse event occurrence beyond the generic 1-year window used here, particularly for short-
term inpatient adverse events and long-term severe adverse events. Additionally, we will need a more 
formal evaluation method for KG-LIME explanations. 
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