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Background 

Large data networks emerge recently to facilitate collaborative learning across multiple 
institutions for increased modeling performance. However, data sharing prohibition and the 
heterogeneity in population among institutions pose new challenges in data modeling 
algorithms. Unlike traditional settings, the data are distributed across institutions instead of 
centralized and only summary-level statistics can be shared. There have been many efforts in 
developing federated learning algorithms for distributed data, see [1-16]. However, the above-
mentioned methods all focused on supervised learning, while less attention paid to unsupervised 
clustering tasks needed for disease subphenotyping. 

Multisystem inflammatory syndrome in children (MIS-C) is a form of serious post-acute sequelae 
of SARS-CoV-2 infection (PASC) in children. The clinical features of MIS-C are diverse and complex 
making the diagnosis of MIS-C difficult. Therefore, it is essential to characterize its disease 
patterns by subphenotypes for improved recognition and treatment. Due to the rareness of MIS-
C, data integration across multiple hospitals is essential to a reliable result. Latent class analysis 
(LCA) is a statistical model to detecting disease subphenotypes but its implementation in a multi-
site setting is challenging.  



 

 

 

The first challenge is that the commonly used divide-and-conquer meta-analysis-type methods 
cannot be applied. Divide-and-conquer methods obtain an estimator from each site individually 
and then combine the estimators according to a certain rule (e.g., average). However, the LCA 
models trained from different sites cannot be combined because applying LCA separately at 
different sites may not yield the same set of latent classes due to the unsupervised nature of LCA. 
Such inconsistency can lead to ambiguity in matching latent classes among sites. Another 
challenge is the commonly observed existence of heterogeneity among patient populations from 
different sites due to varied geographic regions, community referral patterns, and health system 
structures and processes. Current works on multi-site LCA simply pooled all the data together 
and treated it as a single-site analysis without interpreting the heterogeneity across sites [17,18], 
which may lead to biased estimations [19, 20].  

Motivated by the clinical needs for MIS-C subphenotying and the lack of federated 
subphenotyping methods, we aimed to develop a distributed multisite latent class analysis 
(dMLCA) that properly accounts for the between-site population heterogeneity and requires no 
individual-level data sharing across institutions while achieving the same results as using 
centralized data. We then demonstrated the usage of our method by applying it to a dataset of 
MIS-C patients from nine PEDSnet institutions.  

 

Methods 

We proposed a new model formulation for dMLCA based on the traditional LCA. To solve the first 
challenge of class-matching difficulty, we enforce the latent class characteristics to be the same 
across sites. This is reasonable because disease subtypes depend on the mechanism of the 
disease not sites. To deal with the population heterogeneity, we let the proportion of each 
subphenotypes to be different across sites. Then the distribution of a categorical manifest 

variable 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑞) from site 𝑘 can be expressed by 

𝑓𝑘(𝑦) =∑ 𝜆𝑘𝑐𝑓(𝑦, 𝜋𝑐)
𝐶

𝑐=1
, 

where 𝜆𝑘𝑐 is the proportion of subphenotype 𝑐 on site 𝑘 and 𝜋𝑐  is the mean of 𝑦. We obtain the 
estimation of parameters (𝜃) by maximizing likelihood through EM algorithm. At the 𝑡-th 
iteration of EM, the Newton-Raphson algorithm is applied to solve a target function 𝑄(𝜃|𝜃𝑡−1).  

A key observation to handling the data-sharing prohibition is that the updating formulas in EM 
algorithms are decomposable by sites. Therefore, at each iteration, each site only needs to 
calculate and communicate the decomposable part using its local data and transfer the results 
to the lead site to update the estimation. No patient-level data sharing is needed. For better 
communication efficiency, we set the number of iterations in the Newton-Raphson algorithm to 
1. Since the updating formulas are exactly calculated, our method is lossless compared with LCA 
on centralized data. 

We then applied the dLMCA algorithm to the data of MIS-C patients from 9 institutions between 
March 2020 and December 2021, including 864 children and adolescents < 21 years of age, to 



 

 

 

detect subphenotypes of MIS-C. The data were harmonized by PEDSnet Common Data Model, 
which was developed based on OMOP CDM. The data in this study was from multiple sites but 
accessible from one site. 

Results 

dMLCA separated the complex MIS-C cohort into three clinically interpretable subphenotypes 
(Panel A of Figure 1). The mean posterior probabilities of membership of the latent class were 
0.841, 0.802 and 0.874, respectively, which were large and therefore showed that the classes 
were well-separated. Class 1 (46.1%) corresponds to patients with a milder presentation of MIS-
C not requiring intensive care, with no or minimal cardiac involvement. Class 2 (25.3%) 
represents children with a severe presentation of MIS-C, with cardiac system involvement and < 
4 organ systems involved, and Class 3 (28.6%) represents children with the more severe 
presentation of MIS-C including cardiac involvement along with > 4 systems involved, including 
respiratory, gastrointestinal (GI), renal, hematologic, and dermatological manifestations. These 
findings suggest that children with GI presentations or skin rashes may have an increased risk of 
more severe disease. Besides, dMLCA estimated the site-specific prevalence of subphenotypes 
(Panel B of Figure 1) to help understanding the population composition in each site. Reasons to 
explain the heterogeneity across sites include differences in race/ethnicity distributions, patient 
acuity, and evaluation and treatment protocols for children with MIS-C. 

To demonstrate the validity of the study design, we showed that the MIS-C latent classes we 
found were unique from the general COVID-19 cohort. The heatmap of the characteristics of 
latent classes of COVID-19 PCR-positive children without MIS-C diagnoses was very different 
from the characteristics of MIS-C latent classes (Panel A of Figure 2). We further visualized the 
distances among COVID-19 and MIS-C subpopulations (Panel B of Figure 2). The latent classes of 
the two cohorts were separated from each other in general except for a closeness among MIS-C 
Classes 1, 2, and COVID-19 Class 1. This indicated the clinical overlap in some of the 
presentations of MIS-C and acute COVID-19, which has been described in earlier studies of MIS-
C [21]. 
 



 

 

 

 

Class 1 

Figure 1 Results of MIS-C data analysis using dMLCA with three latent classes. A) Heatmap showing 
the prevalence of ten manifest variables in three latent classes; Each column represents a latent class, 
and each row represents a manifest variable. The color of the boxes represents the prevalence. The 
legend on the top right shows the scale of the colors. Red represents prevalence close to 100% and 
blue represents prevalence close to 0%. Class 1 corresponds to patients with a milder presentation of 
MIS-C not requiring intensive care, with no or minimal cardiac involvement. Class 2 represents children 
with a severe presentation of MIS-C, with cardiac system involvement and < 4 organ systems involved, 
and Class 3 represents children with the more severe presentation of MIS-C including cardiac 
involvement along with > 4 systems involved, including respiratory, gastrointestinal (GI), renal, 
hematologic, and dermatological manifestations. B) Pie charts showing the prevalence of the three 
latent classes by site.  
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Conclusion 

The dMLCA algorithm is an effective federated learning algorithm for disease subphenotyping 
under a distributed environment. It is the first distributed-EM algorithm for learning 
subphenotypes that can be applied for consistent clustering across multiple institutions. It can 
be directly applied to multi-center OHDSI studies for clustering tasks as long as the data are 
harmonized by a CDM (e.g., OMOP CDM). We’ve compared the local performance versus multi-
site performance through simulation (not included in this report) and showed that the multi-site 
algorithm provides more accurate estimation. Our method advances the methodology 
development in federated unsupervised learning and contributes to generating reproducible and 
reliable evidence using real-world data to answer clinical questions. 

A limitation is that multiple communication rounds among institutions are needed to achieve the 
optimal result. We are now working on making the iterative communications be few-shots and 
developing an R package based on this version. 
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Figure 2. A) Heatmap showing the latent classes and their characteristics of children testing positive for 
SARS-CoV-2 by PCR test. B) 2-Dimensional plot comparing the distances among MIS-C and COVID-19 PCR 
positive subpopulations. Closer subpopulations have larger similarities. The distance between each pair of 
latent classes was measured by fixation index (Fst) and mapped onto a 2-dimensional plot through 
multidimensional scaling.  
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