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Background

Evidence synthesis, or meta analysis, is a topic of great interests in health science research. In settings where
studies are performed on a federated network of observational health databases, we need to combine and
summarize study results without directly extracting patient-level information. Importantly, it is necessary
to correct for estimation bias due to residual systematic error in observational data [II, 2, [3]. Conventional
meta analysis approaches based on simple mixed effects models prove to be insufficient in these aspects [4].
We introduce a novel, likelihood-based approach for evidence synthesis by jointly learning the meta-analytic
effect of interest and correcting for estimation bias through a Bayesian hierarchical modeling framework that
admits heterogeneity across data sources. This framework achieves bias correction by analyzing a large set
of negative control outcomes, following previous methodological work at OHDSI [3], [5] [6].

Methods
Statistical methodology

We illustrate our statistical methods in the setting of estimating the effect of an exposure on an outcome of
interest, though our framework is applicable to any generic meta analysis with likelihood functions available.

Here the true effect size is quantified by the log rate (or risk) ratio, denoted by 6,0 where ¢ =1,2,..., M
indexes each data source. We assume that, due to the presence of residual systematic error, the true effect
size 0,9 is biased by an additive bias term (;¢, leading to a biased estimand 0,9 = 6;9 + Bio.

We empirically characterize the bias by analyzing a set of IN; negative control outcomes within each data
source ¢, indexed by 7 = 1,2,..., N;. For each negative control outcome j, we assume the same additive
bias relationship where the biased effect estimand éij = 0;; + Bi; with 6;; and B;; denoting the true effect
size and estimation bias, respectively. By definition, a negative control outcome is an outcome that has no
association with the exposure, and therefore 6;; = 0, leading to éij = (. That is, the uncorrected effect
size estimate for the exposure on negative control j within data source 7 is an estimate of the bias term f;;.
Importantly, we further assume that the bias terms 8;o and 3;;’s are exchangeable within each data source.

We adopt the following generative and prior distributions to build a Bayesian hierarchical model for
jointly learning 6;4’s and B;o’s across data sources:
0;0 ~ Normal(u, 72),
57,3 ~ Normal((Si, 73)7
8; ~ Normal(\, n?).



And further,

A ~ Normal(0, sd?),
T, %, n ~ halfNormal(0, 100),
A ~ Normal(0, 100).

Here, 1 denotes the bias-corrected, meta-analytic effect, whereas its prior standard deviation sd is a tunable
hyper-parameter. §; denotes the average estimation bias within data source 1.

Instead of using only the point estimates for éij’& we exploit the likelihood function of the statistical
analysis for each exposure-outcome-database triplet. This enables us to employ a fully Bayesian approach
and perform statistical inference via Markov chain Monte Carlo (MCMC) sampling. We implement the
MCMC via the computational engine stan and provide an open-source R package at https://github.com/
roux-ohdsi/BBAMA.

Empirical validation

We empirically validate our methods using results from the EUMAEUS study [7] that evaluated the performance
of various epidemiological designs for detecting vaccine adverse events using four insurance claims databases
(IBM MarketScan Commercial Claims and Encounters (CCAE), IBM MarketScan Medicare Supplemental
Database (MDCR), IBM MarketScan Multi-State Medicaid Database (MDCD), Optum Clinformatics
Data Mart (Optum)) and one electronic health records database ((Optum Electronic Health Records
(OptumEHR))). Profile likelihood functions were retained and made publicly available for the historical
comparator design and self-controlled case series design, which allow us to implement our Bayesian framework
without re-executing the study on the data sources.

We analyze effects of the seasonal flu vaccine during the 2017-2018 flu season on 93 negative control
outcomes and 279 positive control outcomes synthesized from the negative controls with different known
effect sizes [l

Results

We first showcase the flexibility of the proposed Bayesian evidence synthesis approach by examining the
occurrence of animal bite wounds after receiving seasonal flu vaccination using the historical comparator
design where we set the prior standard deviation sd = 5. Figure [l| presents the posterior distributions of the
bias-corrected effect sizes (left) and average empirical bias (right) across the five databases. Our framework
is able to identify heterogeneity across databases on bias d; (note the different density curves in plot (b))
while recognizing the homogeneity in effect sizes across databases after performing bias correction (note the
similarity between posterior density curves for 6, in plot (a)). This is a much desired feature thanks to the
shrinkage property of Bayesian hierarchical models — our framework allows differing effects and bias across
different data sources, while encompassing subset models that assume shared effect sizes or bias.

We then validate and compare results obtained by the proposed approach against frequentist estimates
with empirical calibration [3]. Table [1| summarizes the effect size estimates and 95% credible (confidence)
intervals generated by the two approaches across 93 negative control outcomes with true rate ratio RR =1
and 93 positive control outcomes with true rate ratio RR = 1.5. Here we apply a leave-one-out procedure,
where the control outcome to be estimated for is left out from the bias correction component of the model.
We present the median RR estimates across control outcomes, coverage rates and widths of the credible
(confidence) intervals. Across the five databases the Bayesian and frequentist effect estimates are similarly
accurate, with comparable coverage rates. However, the Bayesian credible intervals are noticeably narrower
compared to the confidence intervals generated by empirical calibration. This indicates that our framework
can provide more information precision while maintaining the quality of uncertainty quantification.

Hnformation on the control outcomes is provided in the EUMAEUS study protocol at: https://ohdsi-studies.github.
io/Eumaeus/Protocol.html.
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(a) Posterior distributions of bias corrected effect sizes
(0:0) across five databases.
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(b) Posterior distributions of average estimation bias (;)
across five databases.

Figure 1: Effects of seasonal flu vaccine on animal bite wounds across five databases under the historical
comparator design. Left: learned effect sizes with bias correction. Right: learned estimation bias. Posterior
medians and 95% credible intervals are annotated on each posterior density curve.

Median RR Interval coverage Interval width (log scale)

Database Bayesian Empirical Bayesian Empirical Bayesian FEmpirical

True RR =1
CCAE 0.95 0.98 96.40% 96.40% 1.27 1.88
MDCD 0.96 0.91 96.30% 97.50% 1.30 2.08
MDCR 0.97 0.93 96.20% 97.50% 1.20 1.73
Optum 0.97 1.00 97.60% 96.40% 1.17 1.65
OptumEHR  0.99 1.01 97.80% 98.90% 1.14 1.49

True RR = 1.5
CCAE 1.53 1.48 96.90% 96.90% 1.76 1.85
MDCD 1.42 1.38 96.20% 96.20% 1.61 2.04
MDCR 1.42 1.36 96.80% 96.80% 1.30 1.52
Optum 1.53 1.52 97.30% 97.30% 1.53 1.63
OptumEHR  1.58 1.53 98.60% 98.60% 1.42 1.47

Table 1: Effect size (rate ratio, RR) estimates obtained using the proposed Bayesian approach and frequentist
approach with empirical calibration across 93 negative control outcomes (true RR = 1) and positive control
outcomes with true RR = 1.5, with coverage rates and widths of 95% credible/confidence intervals.



Conclusion

We introduce a novel Bayesian evidence synthesis approach to perform meta analysis of observational studies
executed on distributed data sources. Through a Bayesian hierarchical modeling framework that admits data
source heterogeneity, we can jointly learn the meta-analytic effect size while performing bias correction by
analyzing a large set of negative control outcomes. Using results from the EUMAEUS study on vaccine safety,
we demonstrate the flexibility of the Bayesian hierarchical framework, and that our approach can generate
accurate effect estimates comparable to frequentist estimates with empirical calibration while providing more
precise uncertainty quantification.
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