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Background 

Observational studies estimating causal effects are vulnerable to confounding because groups receiving 
different treatments may differ in important aspects. OHDSI studies typically rely on large-scale 
propensity score (LSPS) models to adjust for these differences.1 When treatment groups are sufficiently 
large, LSPS has proven to work well, both in terms of covariate balance and residual systematic error 
measured using negative controls.2 However, little is known about LSPS’s ability to adjust for confounding 
when treatment groups are small. To complicate matters, prior research shows that our ability to measure 
covariate balance — using the standardized difference of means (SDM) — degrades when sample size is 
limited.3 

Methods 

To measure performance of LSPS under small sample sizes, we take a large study population and randomly 
divide it into smaller partitions to simulate different data sites, as shown in Figure 1. After various 
adjustment strategies we pool the data again to compute a hazard ratio which we compare to the ground 
truth. 

 

Figure 1. Simulating small data sites. We extract a target (T) and comparator (C) cohort from a large 
database and take a 20,000-person random sample. We then randomly divide these into n equally-sized 
sites. We evaluate propensity score adjustment using propensity models (PM) fitted at each simulated 
site (Local) or using a single PS model fitted on the original full data (Global), and compare this to no PS 
adjustment (Unadjusted). Data is pooled across simulated sites before fitting a stratified Cox model.  

Ground truth 

We specify four target-comparator treatment pairs, each with a set of negative control outcomes: 

1. Lisinopril vs hydrochlorothiazide, with 76 negative controls (taken from LEGEND-HTN) 
2. Lisinopril vs metoprolol, with 76 negative controls (taken from LEGEND-HTN) 
3. Sitagliptin vs glimepiride, with 94 negative controls (taken from LEGEND-T2DM) 
4. Sitagliptin vs liraglutide, with 94 negative controls (taken from LEGEND-T2DM) 



 

 

 

For each negative control we generate three synthetic positive controls, with true effect size = 1.5, 2, or 
4. 

Data sources 

We use the Merative MarketScan MDCD, MarketScan MDCR, and the Optum® de-identified Electronic 
Health Record dataset (Optum EHR). 

Simulating smaller sites 

From the full set of persons included at the start of the study (starting either treatment, having 365 days 
of observation prior, not being in both cohorts), we first randomly sample 20,000 patients. We then 
randomly divide (without replacement) the 20,000 patients into n =  

• 5 sites of 4,000 persons 

• 10 sites of 2,000 persons 

• 20 sites of 1,000 persons 

• 40 sites of 500 persons 

• 80 sites of 250 persons 

• 160 sites of 125 persons 

Propensity score adjustments 

We compare qualities of treatment effect estimates under propensity scores (PS) computed in two 
different ways: using only the data at each site (`local`) and using the full population (`global`). The ‘global’ 
approach serves as the gold standard benchmark. Subsequent 1-on-1 PS matching and PS stratification 
(into 10 equally-sized strata) are done locally at each site. Additionally, we also include an analysis without 
PS adjustment to assess the amount of confounding in a study. 

Causal effects are estimated using Cox proportional hazards models, which are conditioned on the PS 
strata when performing PS stratification. A conditional Cox model does not include the stratum ID as 
predictor variable, but instead limits the at-risk set in the likelihood denominator to only those subjects 
within the same stratum as the subject for which the likelihood is computed (in the denominator). It 
therefore allows for different baseline hazards within strata, while fitting a model across the entire 
population. When using 1-on-1 PS matching, we do not condition on matched sets. 

Evidence synthesis 

In a real-world setting, each site only shares a summary level data to be meta-analyzed. However, here 
we are primarily interested in assessing the small sample size performance of LSPS and therefore do not 
want to concern ourselves with how meta-analysis might also impact the quality of overall treatment 
effect estimate. We therefore forgo meta-analysis and pool person-level data from each site in fitting 
outcome models. These models do condition on the site. For PS stratification no PS site-strata are merged, 
resulting in a total of n x 10 strata in the model when there are n sites.  

Metrics 

We use the following metrics to measure performance: 

• Expected Absolute Systematic Error (EASE) is computed by first fitting a Gaussian distribution to 
the estimated negative control hazard ratios5, and then taking the absolute expected value of 
that distribution. 

• Geometric mean of the precision (1 / (standard error)^2) after empirical calibration,4 

• Maximum standardized difference of mean (SDM) is computed  by dividing the difference 
between the mean in T and C by the standard deviation for each covariate and taking the 
maximum of the absolute value. 



 

 

 

Results 

Figure 2 compares the EASE when using the locally-fitted propensity model to when using the model fitted 
on the full data (both PS matching and stratification), and to no adjustment. In many scenarios the 
unadjusted analyses already produce low EASE scores, suggesting there is not much confounding to begin 
with. In situations where the unadjusted analyses do show significant systematic error, performance of 
the local PS adjustment does go down as sample size becomes smaller. For example, for sitagliptin vs 
liraglutide in the MDCR database we see an increase in EASE when sample size per site is equal to or 
smaller than 500.  

 

Figure 2. Expected Absolute Systematic Error (EASE) with 95% credible intervals per sample size. 

Because it is difficult to compare performances when both precision and bias (as measured through EASE 
or coverage) vary at the same time, we additionally consider the precision of the calibrated confidence 
interval (CI). Because a calibrated CI by design achieves a common, pre-specified nominal coverage across 
different approaches, we can compare the approaches in the precision they produce (higher the better) 
Figure 3 shows the precision of the calibration CI. Again, in general, we do not observe much difference 
between the local and global propensity scores, except for the sitagliptin vs liraglutide example in all three 
databases where in MDCR and Optum EHR we see a precision drop for the local model. This drop becomes 
larger as the per-site sample size goes down. 

 

 



 

 

 

 

Figure 3. Geometric mean precision after empirical calibration based on both negative and positive 
control estimates. 

If we consider our standard rule that the maximum absolute SDM must be no greater than 0.1 to declare 
balance between the two populations, we observe in Figure 4 that we always fail this diagnostic when 
sample size per site is <= 4,000.  

 

 

Figure 4. Maximum absolute standardized difference of mean (SDM) per sample size. Max SDM is 
computed at each site, resulting in a distribution characterized by box plots. A max SDM below 0.1 is 
considered to indicate balance. 

 



 

 

 

Conclusion 

In general we observe that LSPS remains capable of correcting for most confounding even when sites are 
small; difficulties still arise, however, in situations with known differences between treatments. New 
methods should be developed to address confounding in these situations, such as those having prior 
information about the confounders for which to adjust, dimensionality reduction before fitting propensity 
models, or cardinality matching. The framework described here can be used to evaluate these future 
methods. 

As observed in our prior work,3 our current balance metric of SDM almost always declares imbalance when 
sample size is small, even when there appears to be little residual confounding as measured using negative 
controls. A better balance metric, that at least can indicate when there is insufficient data to evaluate 
balance, should be developed. 

As the OHDSI network grows, we will be able to study more and more rare exposures by combining data 
across many sites. Results here suggest that in many scenarios the LSPS method will be sufficient to 
address confounding in these studies. In some cases, however, new methodology is needed. 
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