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Introduction 

Deriving high-quality evidence from electronic health 

records (EHRs) is compromised by gaps between what is 

documented versus the true patient conditions, particularly 

in mental health.1–3 Noisy label learning can rank order 

patients by the probability of uncoded or undiagnosed MH 

conditions,4 but it has remained an unsolved problem to 

calibrate the predictions to the true disease incidence, 

absent a large representative sample of people who have 

been clinically assessed as both positive and negative. The 

algorithm we presented at the 2021 OHDSI Symposium 

showed promise for self-harm and PTSD imputation and 

estimation of the true fraction (α) of positives among 

imperfectly coded/diagnosed patients.3 However, 

performance suffered when the selected completely at 

random assumption (SCAR)5 did not hold, i.e., coded 

positives must be representative of the uncoded/undetected positives, which is unlikely in healthcare 

data (e.g. milder cases more likely undiagnosed). We introduce a new positive-unlabeled (PU) learning 

algorithm, PULSNAR, that can estimate α among patients with uncoded or undiagnosed conditions 

without “gold standard” assessment of positives and negatives even when the SCAR assumption fails.  This 

technique opens up the possibility of estimating the incidence of undiagnosed conditions to inform public 

health, guide screening efforts for poorly captured conditions, and identify health equity issues where 

coding levels differ by sociodemographics.6 We describe the method and our procedure for generating 

non-SCAR simulated data, then demonstrate that PULSNAR outperforms state-of-the-art algorithms. 

Methods 

We developed two new PU learning algorithms to estimate the proportion of cases (positives) among 

unlabeled samples. The first, PULSCAR, makes the SCAR assumption and is used as a subroutine in the 

second algorithm, PULSNAR, which overcomes the SCAR assumption. 

PU-Learning Selected Completely At Random (PULSCAR) algorithm: Given any ML algorithm, A(x), that 

generates [0-1] probabilities to differentiate between unlabeled and positives using covariates x, let fp(x), 

fn(x), and fu(x) be probability density functions (PDFs) corresponding to cases, controls, and unlabeled 

distributions of A(x), respectively (Figure 1). Let α be the unknown proportion of cases among the 

unlabeled, then fu(x) ≡ αfp(x) + (1 − α)fn(x). Our proposed PU learning method uses beta kernel estimates 

of the PDF of fp(x) and fu(x) to estimate α.  A key observation is that αfp(x) cannot exceed fu(x) anywhere, 

lest the PDF fn(x) have negative probabilities. We estimate α, by finding where the finite-difference slope 

of our error function ε(α) changes maximally: ε(α)=log(min(|fu(x)-αfp(x)|)). Our algorithm is similar to 

DEDPUL,7 a PU-learning technique that also uses density estimates and makes the SCAR assumption, but 

differs in approach to density estimation and α estimation. 

PU-Learning Selected Not At Random (PULSNAR) Algorithm: A key innovation was to first identify more 

homogenous subtypes of positives using unsupervised clustering and then to estimate the proportion of 

Figure 1 Kernel density estimates for simulated data 

(SCAR) with α=10% cases in the unlabeled set. 



 
 

each subtype among unlabeled observations using the PULSCAR algorithm, see Figure 2. 

Probability calibration: The PDF of the coded and uncoded positives should follow the same pattern for 

SCAR data. Using this feature, we identify uncoded positives among the unlabeled examples. Then, the 

isotonic or sigmoid calibration method is applied to the data with coded and imputed positives to get 

calibrated probabilities. 

Evaluation of methods: We tested Cleanlab,8 DEDPUL with 

CatBoost, our PULSCAR method with XGBoost ML, and PULSNAR. 

Our simulations were as follows: a) used sklearn 

make_classification() with class_sep=0.3 (a difficult classification 

task) to generate 6 classes, defining one class as negative and the 

other 5 as positive; b) the labeled positives were assigned in equal 

proportions, but the unlabeled positives were assigned to be 

markedly non-SCAR with the 5 types comprising 1/31, 2/31, 4/31, 

8/31, and 16/31 of the positives in the unlabeled data 

respectively; c) negatives were added to the unlabeled set to 

create different proportions for 5 datasets with α ranging from 

1% to 50% positive among the unlabeled; d) the ratio of unlabeled 

samples to labeled positives was set to 10:1 for class imbalance. 

To create confidence 

intervals, the ML 

models were trained 

and tested with 20 

iterations of 5-fold cross-validation. A simulation was also 

performed to assess the performance of the algorithms when 

the SCAR assumption holds, where the types (step b) had equal 

ratios. The PULSNAR algorithm was evaluated on VHA self-

harm and PTSD data. 

Results 

In Figure 3, the results of random simulations are shown, 

demonstrating that the first 3 SCAR-assuming algorithms fail to 

estimate α accurately with non-SCAR data, but that PULSNAR 

closely estimates the true α. On SCAR data (not shown) 

Cleanlab performed poorly, DEDPUL performed better, and 

both PULSCAR and PULSNAR were extremely close to the true 

answer. DEDPUL struggled when the case fraction was low, as 

is true for many of our MH phenotypes. The performance of 

both Cleanlab and DEDPUL deteriorates if the dataset has a 

substantial class imbalance; which was not observed for either 

of our algorithms. 

Conclusion 

Our PU learning algorithms outperformed existing methods on 

data with SCAR holding or failing.  PULSNAR has the potential 

to estimate bounds on the incidence of under-coded 

conditions without time-consuming chart review, and generate 

highly calibrated classification models to support screening of undiagnosed patients. Future efforts will 

quantify performance on real-world healthcare data where the SCAR assumption cannot be made. 

Figure 3: Schematic of PULSNAR algorithm. A 

ML model is trained and tested with  5-fold CV on 

all positive and unlabeled examples. The 

important covariates that the model used are 

scaled by their importance value. Positives are 

divided into c clusters using the scaled important 

covariates. c ML models are trained and tested 

with 5-fold CV on the records from a cluster and 

all unlabeled records. We estimate the proportions 

(α1…αc) of each subtype of positives in the 

unlabeled samples using PULSCAR. The sum of 

those estimates gives the overall fraction of 

positive samples in the unlabeled set. P = positive 

examples, U= Unlabeled examples. 

Figure 2: Comparison of PU-Learning 

algorithms on non-SCAR data. The 3 

algorithms that make the SCAR assumption 

perform poorly at estimating the true fraction 

of positives (α) among unlabeled observations, 

but our new PULSNAR algorithm (purple) 

obtains close to the true answer over a broad 

range of α values, with no apparent systematic 

bias. Error bars are 2 standard deviations. 
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