

Bayesian sparse survival analysis for detecting subgroup effects: with application to comparing first-line hypertension treatments

Aki Nishimura¹, Martijn J. Schuemie^{1,2}, Seng Chan You³, Marc A. Suchard¹
¹University of California - Los Angeles, ²Janssen Research and Development, ³Ajou University

Beyond Population-level Drug Effect

Current OHDSI (and most other) observational studies quantify effectiveness and safety **averaged** over cohorts of patients.

"Average" patient??

To generate further scientific and clinical insights, we would like to **identify subgroups** who benefit most from particular treatments.

Tailor treatment based on patient characteristics.

Detecting Subgroup via Feature Selection Method

Is the feature x_j relevant? i.e. does treatment effect vary as a function of x_j ?

In a statistics language, identifying subgroups amounts to deciding

$$\gamma_j = 0 \text{ or } \gamma_j \neq 0 \text{ in the model: (hazard rate)} = \sum_{j=1}^p (\beta_j + \gamma_j z_j) x_j,$$

where $z_i \in \{0, 1\}$ indicates treatment assignment.

Challenge — high-dimensional features & low incidence:

- the number of covariates p 10,000+.
- the number of observed events $100s \sim 1,000s$.

Bayesian Sparse Regression / Feature Selection

We look for γ_i 's distinguishable from 0 via Bayesian sparse regression:

Illustration of the posterior distribution of a coefficient γ_j under different effect sizes and levels of uncertainty in data.

Compare to alternatives, Bayesian method has the advantages of \cdot better separation of the significant coefficients from the rest. \cdot quantified uncertainty in the estimate and decision $\gamma_i \neq 0$.

State-of-the-art Computational Techniques

Bayesian sparse regression had **previously** been **computationally intractable** at the scale of OHDSI studies. We develop a new approach based on **Hamiltonian Monte Carlo** (HMC) algorithm.

Originating from computational physics, HMC exploits the properties of Hamiltonian dynamics to efficiently explore the parameter space.

HMC's performance is sensitive to its tuning parameters; to achieve the algorithm's full potential, we rely on

- theory of prior-preconditioning by Nishimura and Suchard [1].
- Lanczos iteration from numerical linear algebra to determine the curvature (largest eigenvalue of Hessian) of the posterior log-density.

Application: ACE inhibitor & thiazide comparison

Goal: Compare effectiveness of the two most common hypertension treatment in preventing major cardiovascular events.

Data: 1,065,745 patients with 7,884 clinical covariates, among whom 5,054 events are observed (0.5% incidence rate).

Result: Bayesian sparse survival analysis identifies gender as a significant source of heterogeneity in the treatment effect:

Regression coefficient estimate for the thiazide-female interaction in the survival model.

Motivated by the above finding and pathophysiology of hypertension among women, we investigated whether the effect varies by age:

Our result suggests that women in their peri-menopausal stage benefit most from treatment by thiazide over ACE.

Conclusion & References

Our Bayesian method identifies a statistically significant subgroup effect **among 7,884 possibilities** in the hypertension data. Software is under development to conduct a further study at larger scale.

- [1] Nishimura A and Suchard MA (2018). Prior-preconditioned conjugate gradient for accelerated Gibbs sampling in" large n & large p" sparse Bayesian logistic regression models. arXiv:1810.12437.
- [2] Nishimura A, Schuemie MJ, and Suchard MA (2019+). Scalable Bayesian sparse generalized linear models and survival analysis via curvature-adaptive Hamiltonian Monte Carlo for high-dimensional log-concave distributions. *In preparation*.

