Bayesian sparse survival analysis for detecting subgroup effects:
with application to comparing first-line hypertension treatments
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Beyond Population-level Drug Effect Bayesian Sparse Regression / Feature Selection Application: ACE inhibitor & thiazide comparison
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stage benefit most from treatment by thiazide over ACE.
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In a statistics language, identifying subgroups amounts to deciding ~ physics, HMC exploits the properties fect among 7,884 possibilities in the hypertension data. Software
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Scalable Bayesian sparse generalized linear models and

. the number of covariates p — 10,000+ - theory of prior-preconditioning by Nishimura and Suchard [1].

survival analysis via curvature-adaptive Hamiltonian E_
- Lanczos iteration from numerical linear algebra to determine the Monte Carlo for high-dimensional log-concave distribu-

curvature (largest eigenvalue of Hessian) of the posterior log-density. tions. In preparation.

-the number of observed events — 100s ~ 1,000s.




